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gramicidinSsynthetase cda PSI A5 5771 D A L E L T P N L DR 5783 
(gi: 3334467, Brevibacil- cda PSI A6 6853 D A L * L T P N [ L D R 6865 
lus brevis); CepA, one of 
three subunits that synthesizes chloroeremomycin (European Molecular Biology Laboratory accession num- 
bers X98690 and S46968; gi: 7522085, Amycolotopsis orientalis); cda PSI, calcium-dependent antibiotic 
peptide synthetase I (open reading frame SC03230, Streptomyces coelicolor). We used the motif PX4GK to 
identify putative substrates of sirtuins. gi, Genlnfo Identifier. 
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residue of a conserved motif in the family 
of AMP-forming enzymes (Fig. 2).5 Lys592 
of propionyl-CoA synthetase, Lys529 of lu- 
ciferase, and Lys517 of gramicidin syn- 
thetase 1 (equivalent to Lys609 of Acs) are 
essential for synthesis of the corresponding 
AMP reaction intermediate but not for the 
thioester-forming activity of these enzymes 
(10-13). We propose that acetylation mod- 
ulates the activity of all the AMP-forming 
family of enzymes. How these enzymes are 
acetylated remains an open question. 

We provide evidence for a broadened 
role of sirtuins in cell physiology that in- 
cludes intermediary metabolism. Our re- 
sults suggest a mechanism for linking the 
physiological state of the eukaryotic cell 
with the acetylation state of histones, a key 
factor in chromatin silencing and chromo- 
some stability. Several studies implicate 
sirtuins in life-span control in yeast and 
metazoans (14, 15). Similarly, manipula- 
tion of NAD+ biosynthetic mechanisms has 
been shown to affect life-span (16). A re- 
cent study documenting the effect of calor- 
ic restriction on yeast mother cell longevity 
suggested that the increased longevity was 
causally associated with increased respira- 
tion; this life-span extension was sirtuin 
dependent (17). As the Acs enzyme pro- 
duces acetyl-CoA, a key metabolite of the 
Krebs cycle, Acs may represent a target for 
life-span extension. 
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A Distinct Signaling Pathway 
Used by the IgG-Containing B 

Cell Antigen Receptor 
Chisato Wakabayashi,l* Takahiro Adachi,l* 

Jurgen Wienands,2t Takeshi Tsubata1l 

The immunoglobulin G (IgG)-containing B lymphocyte antigen receptor (IgG-BCR) 
transmits a signal distinct from that of IgM-BCR or IgD-BCR, although all three use 
the same signal-transducing component, Iga/lgp. Here we demonstrate that the 
inhibitory coreceptor CD22 down-modulates signaling through IgM-BCR and IgD- 
BCR, but not that through IgG-BCR, because of the IgG cytoplasmic tail, which 
prevents CD22 phosphorylation. These results suggest that the cytoplasmic tail 
of IgG specifically enhances IgG-BCR signaling by preventing CD22-mediated 
signal inhibition. Enhanced signaling through IgG-BCR may be involved in ef- 
ficient IgG production, which is crucial for immunity to pathogens. 
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B cells express the membrane-bound form of 
immunoglobulin (mIg) on the surface as a com- 
ponent of the B cell antigen receptor (BCR) (1, 
2), and distinct isotypes ofmIg are expressed by 
B cells, depending on their developmental 
stage. Naive B cells in the peripheral lymphoid 
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organs express both mIgM and mIgD, whereas 
memory B cells in spleen and lymph nodes 
express mostly mIgG. B cells expressing mIgG 
show an enhanced response to antigen stimula- 
tion compared with those expressing mIgM 
and/or mIgD (3), suggesting that IgG-BCR 
transmits a signal distinct from IgM-BCR or 
IgD-BCR. However, all mlg isotypes associate 
with the common BCR signaling component 
Iga/Igp, indicating that all BCRs activate the 
same signaling pathways (1, 2). 

IgM-BCR signaling is negatively regu- 
lated by inhibitory coreceptors such as 
CD22 and CD72 (4-15), and these corecep- 
tors are suggested to set a signaling thresh- 
old for ligation of IgM-BCR. However, 
little is known about whether these core- 
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ceptors regulate IgD-BCR and/or IgG-BCR. 
K461jmX, K46bmX, and K46y2amh are 

transfectants of the B lymphoma line K46 that 
express mIgM, mIgD, and mIgG, respectively 
(16, 17). These mIgs of different isotypes con- 
tain identical antigen-binding variable (V) re- 
gions, specific for the hapten nitrophenol (NP). 
We first tested whether inhibitory coreceptors 
could regulate BCR signaling depending on 
mig isotypes. Because K46 cells express CD22 
but not CD72, the CD22-negative variants 
K461Lv, K466v, and K46-yv were isolated by 
repeated cell sorting. Subsequently, expression 
of CD22 or CD72 was reconstituted by trans- 
fecting expression plasmids for these molecules 
(fig. Si). In the transfectants, expression of 
CD72 reduced antigen-induced phosphoryl- 
ation of both extracellular signal-regulated ki- 
nase 1 and 2 (ERK1 and ERK2), regardless of 
mIg isotypes (Fig. 1A and fig. S2, A and B). In 
contrast, CD22 expression reduced ERK phos- 
phorylation in both K46R1v and K46bv, but not 
that in K46yv, suggesting that CD22 fails to 
down-modulate ERK activation induced by 

IgG-BCR ligation. The isotype-specific regula- 
tion of ERK activity by CD22 was also con- 
firmed by in vitro kinase assay (Fig. IB). Ad- 
ditionally, antigen-induced Ca2+ mobilization 
was also regulated by CD22 in the same iso- 
type-dependent manner (Fig. 1C and fig. S2C). 
Indeed, expression of CD22 reduced BCR-me- 
diated Ca2+ mobilization in both K46pjv and 
K46bv, but not that in K46yv, whereas CD72 
reduced the Ca2+ mobilization in K46yv, as 
well as K46Lv and K46bv. Taken together, 
CD22 but not CD72 regulates BCR signaling in 
an mIg isotype-specific manner, and signaling 
through IgG-BCR, but not that through IgM- 
BCR or IgD-BCR, is resistant to CD22-medi- 
ated signal inhibition in K46 cells. 

Both CD22 and CD72 contain immunore- 
ceptor tyrosine-based inhibition motifs (ITIMs) 
in the cytoplasmic region and negatively regu- 
late IgM-BCR signaling by recruiting Src 
homology 2 domain-containing tyrosine phos- 
phatase-1 (SHP-1) to their phosphorylated IT- 
IMs upon IgM-BCR ligation (18, 19). Consis- 
tent with this, both CD22 and CD72 were 

phosphorylated (Fig. 2), and these phosphoryl- 
ated coreceptors coprecipitated with SHP-1 
upon ligation of IgM-BCR in K46txv transfec- 
tants (Fig. 3). When IgG-BCR was ligated on 
K46^yv transfectants, CD72 was efficiently phos- 
phorylated and coprecipitated with SHP-1. In 
contrast, CD22 was weakly phosphorylated 
(Fig. 2), and only a small amount of phospho- 
rylated CD22 was associated with SHP-1 (Fig. 
3). This is not due to defects in CD22 in 
K46yvCD22 cells, because retrovirus-mediated 
expression of NP-specific IgM-BCR (20) re- 
stored BCR ligation-induced CD22 phospho- 
rylation and SHP-1 recruitment (fig. S3). Rath- 
er, phosphorylation of CD22, essential for 
SHP-1-mediated signal inhibition, is specifical- 
ly prevented upon ligation of IgG-BCR on K46 
cells. To determine whether this observation is 
restricted to K46 cells, we reconstituted expres- 
sion of NP-specific IgM-BCR and IgG-BCR 
using retroviral vectors (20) in other B cell lines 
such as WEHI-279, BAL17, and A20 (fig. 
S4A)-all of which express endogenous 
CD22-and primary mouse spleen B cells (fig. 
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Fig. 1. CD22 fails to down-modulate ERK 
activation and intracellular Ca2+ mobiliza- c 
tion induced by ligation of IgG-BCR. (A) Phos- 
phorylation of ERK. Indicated transfectants 200 
were treated with 0.2 ,g/ml NP-bovine se- 180 
rum albumin (NP-BSA) for the indicated , 
times at 37?C. Cells were subsequently lysed 160 
and subjected to Western blot analysis with 
antibody to phospho-ERK (anti-phospho- 140 

ERK). The same blots were reprobed with 120 
anti-p-tubulin to ensure equal loading. Rep- 
resentative data from at least three experi- 0 
ments are shown. Two independent lines 0 60 120 
were examined for each transfectant, but 
data on only one of them are shown because 
essentially the same results were obtained -- ector-1 --v 
for the other lines. Dose-response analysis is 
shown in fig. S2A. (B) In vitro kinase assay for ERK2. Indicated 
transfectants were treated with medium alone or with 0.2 iLg/ml 
NP-BSA for the indicated times at 37?C. Cells were lysed, and ERK2 
was immunoprecipitated. Half of the immunoprecipitates were sub- 
jected to in vitro kinase assay, using myelin basic protein (MBP) as a 
substrate. Relative ERK2 activity is indicated. The other half of the 
ERK2 immunoprecipitates were subjected to Western blot analysis for 
ERK2 to ensure the presence of ERK2 in the immunoprecipitates. 
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Representative data from three experiments are shown. (C) Ca2+ mobiliza- 
tion. K46u.v and K46yv transfected with the empty vector (black curve), the 
vector containing CD22 (red curve), or the vector containing CD72 (blue 
curve) were loaded with Fluo-4/AM, and intracellular free Ca2+ was 
measured by FACSCalibur (Becton Dickinson, Franklin Lakes, NJ). Cells 
were added with 0.2 jLg/ml NP-BSA at 30 s (indicated by arrows), and 
measurement of free Ca2+ was continued for 300 s. Representative data 
from three experiments are shown. 
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S4B). In these cells, both CD22 phosphoryl- 
ation and SHP-1 recruitment were strongly in- 
duced by IgM-BCR ligation, but poorly by 
IgG-BCR ligation (Fig. 4 and fig. S5), in agree- 
ment with the results on K46 cells. Moreover, 
IgG-BCR ligation induced enhanced ERK phos- 
phorylation compared with that induced by 
IgM-BCR ligation. These results strongly sug- 
gest that ligation of IgG-BCR fails to phosphor- 
ylate CD22, thereby silencing CD22-mediated 
signal inhibition by keeping SHP-1 inactive. 

IgG, but not IgM or IgD, contains a long 
cytoplasmic tail, which is conserved in se- 
quence among IgG subtypes and among species 
(21). The cytoplasmic tail of IgG is crucial for 
efficient IgG production (22) and is responsible 
for the enhanced response of mIgG+ B cells to 
antigen stimulation (3). To assess the role of the 
cytoplasmic tail of IgG, we infected BAL17 
cells with retrovirus to induce expression of 
chimeras of IgM and IgG (fig. S4A and fig. 
S5D) because of efficient retrovirus infection of 
this cell line. Ligation of the IgG/M-BCR con- 
taining the extracellular and transmembrane re- 
gion of IgG and cytoplasmic region of IgM 
induced strong phosphorylation of CD22 and 
marked recruitment of SHP-1, as is the case for 
IgM-BCR ligation (Fig. 4A), suggesting that 
the cytoplasmic tail of IgG is responsible for 
preventing CD22-mediated SHP-1 activation. 
This is confirmed by the finding that ligation of 
IgM-BCR containing the cytoplasmic region of 
IgG (IgM/G-BCR) resulted in weak CD22 phos- 
phorylation and poor SHP-1 recruitment, as is 
the case for IgG-BCR. IgG-BCR thus appears 
to be protected from CD22-mediated signal 
inhibition by containing the conserved cyto- 
plasmic tail. 

We have demonstrated here that CD22 neg- 
atively regulates signaling through IgM-BCR 
and IgD-BCR, but not that through IgG-BCR. 
B cells deficient in CD22 alone exhibit hyper- 
reactivity to ligation of IgM-BCR (11-14), 
demonstrating that lack of CD22-mediated neg- 
ative regulation alone can make B cells hyper- 
reactive to antigen stimulation. Thus, the ab- 
sence of CD22-mediated signal inhibition of 
IgG-BCR signaling may be involved in the 
enhanced response of mIgG+ B cells. Remark- 
ably, the conserved cytoplasmic tail of IgG is 
responsible for both prevention of CD22-medi- 
ated signal inhibition and the enhanced re- 
sponse of IgG+ B cells. It is likely that the IgG 
tail prevents CD22 phosphorylation essential 
for signal inhibition, thereby causing IgG-BCR 
to become more excitable to antigen stimula- 
tion. However, the distinct function of IgG- 
BCR may also involve other, yet unknown 
properties specific to IgG-BCR. CD22 is ex- 
pressed on activated B cells such as germinal 
center B cells and memory B cells (23), as well 
as naive B cells (4). Hyperresponsiveness of 
IgG-BCR may thus confer upon mIgG+ B cells 
a growth advantage over mIgM+mIgD+ or 
mIgM+ B cells in both activated and memory 
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excited state (Sx) mediating the internal conversion from S2 to S, in carotenoids. 
The S2 to Sx transition is extremely fast and is completed within approximately 50 
femtoseconds. These results require a reassessment of the energy transfer path- 
ways from carotenoids to chlorophylls in the primary step of photosynthesis. 
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