
)RTRAITS OF SCIENCE 

Kurt Godel-Separating Truth 

from Proof in Mathematics 
Keith Devlin 

1700 
1800 
1900 
2000 

Kurt Godel's 
Incompleteness 
Theorem changed 
the concept of 
mathematical truth 
and showed the 
limitations of 
axiom-based 

isystems. 

In 1931, a young Austrian mathematician 
published a paper that sent shock waves 
through the mathematical community 

and forced mathematicians to take a fresh 
look at their discipline. The mathematician 
was Kurt Godel, and the result proved in his 
paper became known as the Godel Incom- 
pleteness Theorem, or more simply G6del's 
Theorem-although it was by no means the 
only major theorem he proved during his 
highly successful career. He is also known 
as one of the inventors of the theory of re- 
cursive functions (which formed part of the 
foundation for computers). 

Godel was born on 28 April 1906, in what 
was then Brunn in Austria, now Bmo in the 
Czech Republic. By all accounts he was an 
outstanding pupil in high school and a star 
student at the University of Vienna, where he 
continued after graduation to obtain a doctoral 
degree in 1929. He went straight to a faculty 
position in Vienna, and it was there that he 
proved his Incompleteness Theorem. Godel 
remained in Vienna until 1940, when he fled 
the worsening Nazi atrocities to take up a po- 
sition at the Institute for Advanced Study in 
Princeton, which he had already visited in 
1934. He remained at Princeton until his 
death on 14 January 1978. It was an unlikely 
death for the man who was arguably the 
world's foremost expert in logic. A hypochon- 
driac for much of his adult life, as he grew 
older, Godel became convinced that he was 
being poisoned. He eventually stopped eating 
altogether, and starved to death. 

Godel's decidedly illogical end did 
nothing to diminish his reputation. When 
Time magazine conducted a poll 2 years 
ago to determine the most influential 
thinkers of the 20th century, G6del was 
one of just two mathematicians who made 
the top 20, along with Alan Turing. 

The Incompleteness Theorem forced 
. mathematicians to question what it means 
to say something is true in mathematics. 

| The resulting change in our understanding 
a of mathematics was every bit as dramatic 

as the change in our conception of geome- 
z try that followed the discovery of non- 
< Euclidean geometries in the 19th century. 
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Both of these major discoveries in- 
volved axiomatic systems, and neither can 
be properly understood without an appre- 
ciation of what mathematicians means by 
the word "axiom" and the role axioms play 
in mathematics. A misunderstanding of the 
nature of axioms is what lies behind a sig- 
nificant amount of nonsense that has been 
written about Godel's 
Theorem over the years. 

In brief, Godel's Theo- 
rem says that in any ax- 
iomatic mathematical 
system that is sufficiently 
rich to do elementary 
arithmetic, there will be 
some statements that are 
true but cannot be proved 
(from the axioms). In 
technical terminology, the 
axiom system must be in- 
complete. 

At the time Godel 
proved this theorem, it 
was widely believed that, 
with sufficient effort, 
mathematicians would 
eventually be able to for- 
mulate axioms to support 
all of mathematics. The 
Incompleteness Theorem 
flew in the face of this Kurt 
expectation, and many 
took it to imply that there (190( 
is a limit to the mathe- 
matical knowledge we may acquire. Few 
mathematicians think that way now, how- 
ever. The change in our conception of 
mathematical truth that Godel's theorem 
brought about was so complete, that today 
most of us view the result itself as merely 
a technical observation about the limita- 
tions of axiom systems. 

To appreciate the initial impact of 
Godel's Theorem, you have to adopt the 
mind-set of the time. During the 19th cen- 
tury, mathematicians learned that many 
seemingly intuitive concepts were prob- 
lematic, among them, the structure of the 
real continuum and the nature of continu- 
ous functions. To avoid what could be a 
misleading dependency on unreliable as- 
sumptions and intuitions, they began to put 
greater emphasis on a mode of doing math- 
ematics introduced by the ancient Greeks, 
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but which had been left largely on the side- 
lines ever since then: the axiomatic 
method. Here, the idea is to begin by writ- 
ing down, precisely, an initial set of as- 
sumptions-or axioms (from the Greek 
word axioma)-that you believe to capture 
the concept or system you are interested in. 
You then proceed to establish truths about 

that concept or system by 
means of logical deduc- 
tion from those axioms. 

The most familiar ex- 
amples of this approach 
are Euclid's axioms for 
geometry. In his mam- 
moth work Elements, Eu- 
clid began by listing five 
principles from which all 
truths about plane geom- 
etry were supposed to be 
deduced. Because ax- 
ioms are intended to be 
the starting point of a 
quest for truth, their own 
validity should not be in 
any doubt, of course. The 
axioms should be simple 
assertions that are self- 
evident. 

The fifth of Euclid's 
five axioms states that 

iodel "For every line I and for 
every point P that does 

?1978) not lie on 1, there exists a 
unique line m through P 

that is parallel to 1." Questions about this 
Parallel Postulate dogged Euclidean geom- 
etry for hundreds of years. The axiom was 
in doubt because it was far more difficult 
to state than the other four. Attempts to re- 
solve the issue by deducing it from sim- 
pler assumptions continued in vain, until 
the shocking discovery that its inclusion 
while arguably in line with a natural hu- 
man intuition about parallel lines was 
entirely arbitrary. The familiar geometry 
of Euclid, in which the Parallel Postulate 
was taken as an axiom, was just one of a 
number of possible geometries. Deciding 
between them was purely a matter of taste 
or of intended application. 

In fact, there was a far greater problem 
with Euclid's axioms than his inclusion of 
the Parallel Postulate. His axiom system 
omitted many basic assumptions that he, 
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and generations of subsequent scholars, 
unconsciously used in deriving the theo- 
rems that supposedly followed from the 
axioms. It was left to the German mathe- 
matician David Hilbert to set the record 
straight in the late 19th century, by writing 
down those crucial missing axioms. 

To give some idea of the kind of prob- 
lem that Hilbert noticed, consider one of 
Euclid's most elementary ruler-and-com- 
pass constructions, that of an equilateral tri- 
angle. You begin with a straight line, and 
then draw arcs from the ends of the line, 
with radius set equal to the line. The point 
where the arcs intersect marks the third ver- 
tex of your equilateral triangle. It all seems 
fairly sound. You can, after all, carry out 
these steps and draw an equilateral triangle. 

But as Hilbert observed, how can you be 
sure that the two arcs really do intersect? 
That is, how do you know they have a point 
in common? Just because the arcs you draw 
on a sheet of paper look as though they 
meet, that does not guarantee that 
there really is a point of intersection. 
After all, unlike the pencil lines you 
actually draw, the idealized lines . _ 
and arcs of geometry have no thick- -' '= 

ness. How can you be sure that two 
' 

arcs having no thickness have a 
point in common? The answer is 
that you cannot. If you want the two 
arcs to intersect, you need to have 
an axiom that implies that they do. 
It is a reasonable axiom, completely 
in line with our intuitions about 
drawing arcs. But its status is that of 
an assumption, not something that 
can be proved. 

The lesson to be learned from 
Hilbert's work is that it can be ex- 
tremely difficult to identify all the 
assumptions that are used in any 
branch of mathematics. Following 
his work on the axioms for geome- 
try, Hilbert put forward a view of l 
mathematics that was to gain con- 
siderable acceptance. According to this 
view, which became known as formalism, 
mathematics should be regarded as being, 
at heart, nothing other than a collection of 
formal games, each one played according to 
completely specified rules. 

To do Euclidean geometry, for instance, 
was to play the Euclidean geometry game. 
In that game, you start with the axioms for 
Euclidean geometry and then deduce all 
the truths of Euclidean geometry by means 
of mechanistic manipulations of symbols 
according to totally specified rules. Noth- 
ing could be used that was not specified by 
the axioms or the manipulation rules. In 
particular, no intuition about the nature of 
points or lines coul r hld or should be used. As 
Hilbert himself remarked, you could re- 
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place all talk about points and lines by ref- 
erence to beer mugs and bar tables, provid- 
ed you formulated the axioms in terms of 
those objects, and the resulting theory 
would be identical in all respects except 
for the actual words being used. 

By removing all intuitions so that 
points and lines are no different from beer 
mugs and bar tables, the reasoning went, 
mathematics would be forever free from 
the dangers of unrecognized and possibly 
misleading assumptions. It would, in prin- 
ciple, be possible to design mechanical de- 
vices-which, of course, have no intu- 
itions-to follow the rules and deduce all 
the truths for you. (This, remember, was 
before computers were invented.) 

This approach to mathematics, to for- 
mulate all the axioms you need to deduce 
all the truths in a particular branch of 
mathematics mechanistically, became 
known as the Hilbert Program. For many, 
the search for axioms became something 

of a Holy Grail, although Hilbert, who had 
great respect for the role played by human 
intuition in the practice of mathematics, 
was not one of them, and never himself 
proposed that the program to which others 
attached his name should be carried out. 

One of the most sustained efforts to 
carry out the Hilbert Program was made by 
the English philosophers Bertrand Russell 
and Alfred North Whitehead. Their mam- 
moth, three-volume work, Principia Math- 
ematica, published from 1910 to 1913, was 
an attempt to develop basic arithmetic and 
logical reasoning itself from axioms. 

It was the axiom system in Principia 
Mathematica that G6del took, by way of an 
exemplar, to demonstrate beyond any doubt 
that the goal of the Hilbert Program was 

unattainable. He called his dramatic paper 
"On formal undecidable statements of Prin- 
cipia Mathematica and related systems." At 
the time that G6del proved it, the Incom- 
pleteness Theorem gained a reputation of 
being difficult to follow. But that has long 
ago given way to a realization that it is re- 
ally a rather simple result. The complexi- 
ties of G6del's original proof are largely ir- 
relevant, a consequence of the particular 
way he presented the argument. In essence, 
G6del took the familiar Liar Paradox and 
showed how to reproduce it within any 
axiom system that supported arithmetic. 

The Liar Paradox, which goes back to 
ancient Greece, arises when a person 
stands up and says "I am lying." If the per- 
son is lying, then the statement is true, so 
they are not lying; and if they are not lying, 
the statement is false, so they are lying. 
This is a seemingly inescapable paradox. 
Godel took a similar statement, "This 
statement is not provable," and showed how 
it could be formulated as a mathematical 
formula within arithmetic. 

This required, first of all, coding state- 
ments as numbers-a process known as 
Godel numbering. At the time, this was 
regarded as a deep and difficult step, but 
today any number of spy movies have 
depicted the way in which English words 
and sentences can be encoded as se- 
quences of numbers, often as part of the 
process of encrypting messages. G6del's 
next step was to show how the concept of 
provability could be captured within arith- 
metic. This was a somewhat deeper move, 
but to today's mathematicians it too seems 
fairly routine. 

Once the coding had been completed, 
the noose was tight. If one assumed that the 
axiom systems were consistent (that is, they 
did not lead to any internal contradictions), 
the statement clearly could not be provable 
(since it declared its own unprovability). 
Hence it was true-but unprovable. 

To those mathematicians (the formal- 
ists) who believed that mathematical truth 
was the same as provability-that the true 
statements of mathematics are precisely 
the ones you can prove from the axioms 
once you have formulated them all proper- 
ly-G6del's theorem was devastating. To- 
day, however, as I remarked earlier, mathe- 
maticians regard it simply as confirming 
the limitations of what can be achieved 
with axiom systems. 

But they are able to do so only because 
contemporary mathematics has learned the 
lesson that G6del's Theorem taught us. 
Godel's result may not have changed math- 
ematics very much. But it changed the way 
we view it. His selection as one of the most | 
influential thinkers of the 20th century is t 

undoubtedly well deserved. 
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