
Specific strategies mediating gene repression 
and gene silencing are required to generate 
cell-type diversity and promote inheritable 
cell-type identity [reviewed in (1)]. For ex- 
ample, the transcriptional repression of neu- 
ronal-specific genes is necessary to maintain 
functions unique to nonneuronal systems. Al- 
though the precise mechanisms responsible 
for this tissue-specific transcriptional inacti- 
vation remain unclear, it has been shown that 
repressor element RE-1 silencing transcrip- 
tion factor/neuronal restricted silencing factor 
(REST/NRSF) is a negative regulator that 
restricts expression of neuronal genes to neu- 
rons in a variety of genetic contexts (2-4). 
About 35 neuronal target genes have been 
identified for REST/NRSF [reviewed in (4)]. 
REST/NRSF is a 116-kD protein that con- 
tains a DNA binding domain with eight zinc 
fingers and two repressor domains (4-6) and 
binds to a 21- to 23-base pair (bp) conserved 
DNA response element, RE-1/NRSE (2-4). 
It has been shown that REST/NRSF can me- 
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diate repression, in part, through the associ- 
ation of its NH2-terminal repression domain 
with the mSin3/histone deacethylase 1,2 
(HDAC1,2) complex and with the nuclear 
receptor corepressor (N-CoR) participating in 
the context of certain genes (7, 8). The REST/ 
NRSF COOH-terminal repression domain as- 
sociates with at least one other factor, the 
transcriptional corepressor CoREST, charac- 
terized by two SWI3, ADA2, N-Cor, TFIIIB 
(SANT) domains (9), that may serve as a 
platform protein for assembly of specialized 
repressor machinery (10-12) (fig. Si). 

HDAC-dependent repression of the 
neuron-specific gene SCG10. REST/NRSF 
alternatively recruits mSin3A/HDAC1,2 (7, 8) 
or CoREST complexes (10-12). To investigate 
the molecular mechanisms involved in REST/ 
NRSF-mediated gene repression and corepres- 
sor complexes, we studied one of the most 
well-characterized neuronal-specific genes, 
NaCh type II/Navl.2, and compared its regula- 
tion to that of SCG10 (5-8). In a chromatin 
immunoprecipitation assay (ChIP) (8, 13) from 
Rat-1 fibroblasts, REST/NRSF and CoREST 
were highly recruited to the NaCh II promoter, 
whereas N-CoR was not (Fig. 1A). HDAC1, 
HDAC3, and HDAC2 were detected in small 
quantities or not at all in some experiments 
(14). In contrast, REST/NRSF was present on 
the SCGIO gene promoter with HDAC2, 
HDAC3, and N-CoR (6, 8, 14). Transfection of 
a construct that encodes the REST/NRSF DNA 
binding domain (RESTDBD) harboring dele- 
tions of the defined NH2- and COOH-terminal 
repressor domains (6, 13), and hence a potential 
dominant negative, resulted in the specific de- 
repression of both the SCGO1 and NaCh II 

genes (Fig. iB). Thus, the binding of REST 
functions in both establishing and maintaining 
repression (2-4). 

Overexpression of the REST/NRSF inter- 
action domain of CoREST (CoRESTRID) (6) 
served as a dominant negative in the Rat-1 
cells and resulted in the specific derepression 
of the NaCh II gene (Fig. 1C); in contrast, 
there was no effect on repression of the 
SCG10 gene (Fig. 1C). Because CoREST can 
form a biochemical complex with HDAC1/2 
(10-12), we investigated the functional im- 
portance of HDACs by treating Rat-1 cells 
with an HDAC inhibitor, trichostatin A 
(TSA) (300 nM) (7). When exponentially 
proliferating Rat-1 cells were incubated in the 
presence of 300 nM TSA, ectopic activation 
of the SCGO1 gene was observed, with the 
maximum level of expression activity 8 hours 
after treatment (Fig. 1D). In contrast, even 
after a 48-hour treatment with TSA no detect- 
able activation of the NaCh II gene was 
observed (Fig. ID). These data indicate that 
CoREST is selectively required to maintain 
NaCh II but not SCGO1 gene repression. 

CpG methylation is required for silenc- 
ing NaCh II gene transcription. Because 
TSA failed to reduce NaCh II gene repression 
and because DNA methylation is a widely used 
strategy in gene silencing (15), we examined 
the CpG methylation status of the NaCh II gene 
in Rat-1 cells. Within the genome, from 60 to 
90% of the cytosine methylation occurs at CpG 
dinucleotides (15-17). With the use of the so- 
dium bisulfite genomic-modification sequenc- 
ing approach (13), we found that the NaCl II 
promoter region exhibited a sparse pattern of 
CpG methylation (CmpG), with three sites 
(-447, -259, and +45) preferentially methyl- 
ated, whereas the CpGs further along the 3' end 
of the gene exhibited a more robust methylated 
CpG pattern (Fig. IE) (14). Treatment of Rat-1 
cells with 5'-aza-cytidine (SAzaC) for a pro- 
longed period of time (up to 72 hours) to re- 
verse DNA methylation reduced specific CpG 
methylation in the NaCh II gene promoter (Fig. 
1F and fig. S2) and caused derepression of the 
NaCh II but not the SCG-10 gene (Fig. 1G). 
These data suggest that the NaCh II gene might 
be silenced in a CmpG-dependent manner. 

Among the many proteins that bind to 
methylated DNA, MeCP2 characteristically 
binds to single, symmetrical CmpG pairs in 
any sequence context (18-20) and has been 
functionally linked to gene silencing (21-24). 
Because it is also robustly expressed in Rat-i 
cells (fig. S3), we investigated the possible 
participation of MeCP2 in NaCh II gene re- 
pression. ChIPs were performed from Rat-1 
cells using a MeCP2-specific immunoglobu- 
lin G (IgG) (Fig. 2A) and primers from the 
REST-binding element in the promoters as 
well as from the 3'-coding regions of SCGO1 
and NaCh II genes. MeCP2 is present in both 
the promoter and exon and intron regions of 
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nous MeCP2 and CoREST in Rat-1 cells 
(Fig. 2B). The overexpression of the DNA 
binding domain of MeCP2 (MeCP2MDB) as a 
putative dominant negative resulted in dere- 
pression of the NaCh II gene, but had no 
effect on repression of the SCGIO gene (Fig. 
2C). The effects of MeCP2MDB on derepres- 
sion of NaCh II gene transcription after > 12 
hours in synchronized Rat-1 cells suggest that 
it blocks reestablishment of the repression 
apparatus after DNA replication (Fig. 2D). 
Although the class I HDACs were shown to 
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Fig. 1. REST/NRSF can mediate HDAC-dependent and DNA methylation-dependent repression of 
neuronal-specific genes in Rat-1 fibroblasts. (A) ChIP in Rat-1 fibroblasts, using PCR primers specific 
for the REST-containing regions in NaCh II and IgGs specific to CoREST, REST/NRSF, and N-CoR. (B) 
Analysis of SCGO0 and NaCh II transcripts with transient expression of RESTDBD or RESTWT in Rat-1 
cells as detected by reverse transcriptase PCR (RT-PCR). PC12 cells and constitutively expressed 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were used as controls. (C) NaCh II but not 
SCG70 gene repression is reversed by transient expression of CoRESTRID. (D) Ectopic activation of 
the SCG10 gene in TSA-treated (300 nM) Rat-1 fibroblasts. (E) Mapping of methylation status of 
NaCh II gene by bisulfite-modification sequencing in Rat-1 cells (22), in the promoter (upper) and 
further 3' region within the NaCh II gene (lower). Methylated CpG pairs shown as open boxes, with 
unmethylated C converted to T (underlined) upon bisulfite treatment. (F) Change in DNA 
methylation status and (G) restoration of NaCh II gene expression after 5AzaC treatment in Rat-1 
cells. Rat-1 cells treated with 10 iuM of 5AzaC in the absence (-) or presence (+) of 300 nM of TSA. 
Total RNA was isolated for the detection of NaCh II or SCGO0 mRNA by RT-PCR. 

interact with MeCP2 via mSin3 (18), MeCP2 
is preferentially localized to pericentromeric 
heterochromatin (20), a region of the highest 
5'-CmpG concentration (21), suggesting that 
some components of heterochromatic estab- 
lishment may use MeCP2 as a readout for 
long-term repression. Our data, thus, indicate 
a requirement for MeCP2 as well as REST, 
CoREST, and DNA methylation in establish- 
ing and maintaining TSA-independent re- 
pression of the NaCh II gene in Rat-1 cells. 

To determine whether the similar events 
that led to the formation of silenced regions at 
the centromere, at mating-type loci, and during 
X chromosome inactivation (26-34) pertain to 
REST/CoREST-dependent gene silencing, we 
applied ChIP analysis, which revealed the pres- 
ence of heterochromatic protein 1 (HP1) as well 
as MeCP2 (Fig. 2E) and CoREST (Fig. 1A) on 
the NaCh II promoter. HP1 interacts with a 
specially modified histone H3 (dimethyl Km9 
histone H3) and is proposed to cause spreading 
of heterochromatic regions at the 3-globin lo- 
cus and in X chromosome inactivation (25-27). 
Indeed, dimethyl Km9 histone H3 was observed 
on the NaCh II but not on the SCGO1 promoter 
(Fig. 2E). 

Immunoprecipitation from Rat-1 cells of 
hemagglutinin (HA)-tagged holo-MeCP2 or 
HA-tagged MeCP2DBD revealed histone H3- 
but not histone H4-specific methyltransferase 
activity in the immunoprecipitated complex 
containing holo-MeCP2 (34) (Fig. 2F). In 
contrast, no methyltransferase activity was 
recovered from immunoprecipitated com- 
plexes associated with the HA-tagged domi- 
nant-negative form of MeCP2 (MeCP2DBD) 
(Fig. 2F). 

Mammalian histone lysine methyltrans- 
ferase, suppressor of variegation 39H1 
(SUV39H1), initiates silencing with selective 
methylation on Lys9 of histone H3, thus creating 
a high-affinity binding site for HP1 (34-36). 
When an antibody to endogenous SUV39H1 
was used for immunoprecipitation, MeCP2 was 
effectively coimmunoprecipitated; conversely, 
aHA antibodies to HA-tagged MeCP2 could 
immunoprecipitate SUV39H1 (Fig. 2G). Two 
consecutive rounds of immunoprecipitation for 
the ChIP showed that MeCP2 and SUV39H1 
(Fig. 2H) and CoREST and MeCP2 (fig. S4) 
were present on the same NaCh II transcrip- 
tion units (Fig. 21). Further, MeCP2 was se- 
lectively immunoprecipitated from mixed hi- 
stones prepared from Rat-1 cell nuclei by 
adi-Me K9 histone H3, but not aAcK14 his- 
tone H3 or aPIO H3 histone IgGs (14). 

CoREST-dependent silencing of a chro- 
mosomal region. To identify previously un- 
known REST/NRSF target genes (5), we 
conducted a human and murine genome-wide 
search for REST/NRSF binding sites on the 
basis of the consensus site derived from ex- 
perimentally confirmed RE1/NRSF with four 
invariant residues critical for function and 
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the NaCh II gene but does not bind to the 
SCGO1 gene (Fig. 2A). No detectable quan- 
tities of the methyl DNA binding proteins 
MBD3 or MBD4 were observed on the NaCh 
I gene promoter (14). In light of recent 
reports of a biochemical interactions between 
MeCP2 and transcriptional corepressors (25), 
we investigated the relationship between 
MeCP2 and CoREST. An affinity-purified 
polyclonal CoREST antibody (6) was used in 
immunoprecipitation assays (13) to detect di- 
rect or indirect interactions between endoge- 
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permitting four mismatches (13, 37). This 
bioinformatics approach revealed 1047 po- 
tential REST-binding sites in the genome, all 
but 40 located adjacent (+2 kb) to known or 
predicted genes. 

Many of the putative REST/NRSF target 
genes have sufficiently well-characterized ex- 
pression patterns, suggesting that -90% can be 
assigned as strictly or predominantly neural- 
specific. The predicted genes encode a wide 
variety of functional molecules including li- 
gands; ion channels; receptors; receptor-associ- 
ated factors; and cytoskeletal and adhesion mol- 
ecule-factors involved in axonal guidance, 
transport machinery, transcription factors, and 
cofactors; a portion of which are listed in Table 
1. However, some genes are not neuronal-spe- 
cific, including a cohort of genes involved in 
angiogenesis and chromatin remodeling. Eval- 
uation of the effects of TSA and 5AzaC on 
several predicted REST/NRSF target genes 
suggests that there will be numerous genes 
exhibiting REST/NRSF-dependent silencing 
that require DNA methylation (e.g., SMARCe), 
as well as genes exhibiting HDAC-dependent 
repression mediated by REST/NRSF [e.g., ot- 
oferlin (OTOF)] (37). Both genes require 
REST for their repression, but overexpression 
ofCoRESTRID or MeCP2MBD causes derepres- 
sion of SMARCe in Rat-l cells (Fig. 3A), 
whereas OTOF is reactivated only in the TSA- 
challenged Rat-1 cells (Fig. 3A). 

The search for REST/NRSF binding sites 
revealed that many putative REST-regulated 
genes were tightly clustered. We found several 
neuronal-specific genes grouped together in the 
rat genomic interval 3q22-32 where the NaCh 
II gene is mapped. In this interval, the only 
RE1/NRSE elements identified by informatics 
were in the promoters of the REST/NRSF- 
regulated neuronal-specific NaCh II, GADI, 
and M4 (38, 39). Although eight sodium chan- 
nel genes are organized in a cluster that mapped 
to the corresponding chromosome 2 interval in 
the human genome, current information permits 
only the NaCh III gene to be clearly mapped to 
the rat chromosome 3q22-32 interval. The 
HoxD9 gene mapped to the same interval 
(3q24-32), and neither NaCh III nor HoxD9 
contained REST/NRSF sites. Such grouping of 
REST-regulated genes at the rat locus 3q22-32 
raised the questions of whether CoREST/ 
MeCP2-mediated silencing is imposed on other 
REST-regulated genes in the interval (such as 
GAD] and M4) and whether a similar mode of 
repression can be extended to genes not harbor- 
ing REST response elements (such as NaCh III 
and HoxD9). 

Data from transcriptional expression profil- 
ing in Rat-1 cells demonstrated that NaCh II, 
NaCh III, GADI, HoxD9, M4, and NeuroDI 
were not expressed in Rat-i cells (Fig. 3B), 
whereas genes 5' (such as GpD2 and GCg) or 
3' (such as Coxl and PCNA) to the interval 
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Fig. 3. Chromosomal inter- 
val q22-32 on rat chromo- 
some 3 is silenced in a 
REST/CoREST-dependent 
manner. (A) Analysis of the 
expression of SMARCE and 
OTOF genes in Rat-1 cells 
treated with TSA and 
5AzaC, dominant-negative 
MeCP2, REST/NRSF, or 
CoREST. (B) Derepression 
of a silent locus on rCh3. 
Expression profiling for 
wild-type and TSA- or 
5'AzaC-treated Rat-1 cells 
or Rat-1 cells transiently 
expressing RESTDBD, 
MeCP2MBD, and CoRESTRID 
was performed using RT- 
PCR (one of the experi- 
ments shown on the right). 
Genes containing binding 
sites for REST/NRSF in 
their promoters (NaCh II, 
GAD1, and M4) are labeled 
with an asterisk (*). 
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Table 1. Representative examples of putative REST/NRSF target genes with a response element adjacent to the promoter based on informatics. 

Receptors 
Somatostatin rec 4 
Seratonin rec 3 
Seratonin rec 6 
Neuronal pentraxin rec 
Histimine rec 3 
Dopamine D 3 
GABA rec 
Glutamate rec 
Glutamate rec, kinate2 
Tyrosin phosphatase rec, typeH 
Glutamate rec, M4 
Glutamate rec 
Neurotropic tyrosine kinase rec 
Glutamate rec 
CRH rec 2 
Growth hormone rel factor rec 
-Ephrin rec EphA7 
Amyloid b (A4) PLP1 
Melatonin rec 1B 
Olf-rel receptor-4F3 
-Olf-rel receptor 

Receptor-associated 
Dvl 1 
G-protein signaling 1 
Tetraspan TM4SF 
Sweet-taste rec T1R3 

Ligands/neutrophils 
Urocortin 
Neural pentraxin 2 
Proenkcphalin 
Orexin 

Angiogenesis 
ADAMTS2 
-ADAMTS-9 (disintegrin) 
-ADAMTS-9 
Angiopoietin 4 
Brain-spec angiogenesis inhibitor 2 

Adhesion 1 
Cadherin-like 
-Tubulin b 2 chain 
Vitronectin 
SYT5 
Myosin VB 
Teneurin 2 
-Ankyrin binding protein 
Neurofilament 3 
Centaurin gamma 1 

Enzymes 
Cdk 5 Reg subunit 2 
GAD1 
MGAT3 
MMp24 
Phenylalanine hydroxylase 
PAK7 
Serine protease 
Binding proteins 
Oxysterol BP5 
Oxysterol BP2 (retina) 

Transcription factors/cofactors 
POU5P2 
POU4P3 
Med-6 
DDX30 
RNF30 
Nuclear rec coactivator 5 

(SSTR4) 
(HTR3) 
(HTR6) 
(NPXR) 
(HR3) 
(DRD3) 
(RG2) 
(GRIK3) 
(GRIK2) 
(PTPRH) 
(GRM4) 
(GRIK4) 
(NTRK3) 
(GRIN2A) 
(CRHR2) 
(GHRHR) 
(163918) 
(APLP1) 
(MTHR1B) 
(168119) 
(123278) 

(135997) 
(TSPAN-2) 
(126788) 

(UCN) 
(NTPX2) 
(PENK) 
(HCRT) 

(Disintegrin) 
(125614) 
(160783) 
ANGPT4 
(BAI2) 

(CDH22) 
(138099) 

(SYT5) 
MY05B 
(134424) 
(169415) 
(NEF3) 
CENTG1 

CDK5R2 

PAH 

P22 

OSBP5 
OSBP2 

DNA remodeling 
DNMT 3A (embryonic) 

-SMARCe 

Nerve terminals/signaling 
Regulator of G-protein 10 

Channels 
Na Chll 
-Voltage gated Na+ channel 
K+ Ch.NAB2 
Hyperpolariz activated Chrom K+ 
Ether-a-go-go 
HCN2 
-Ether-a-go-go-like K+ channel 
Task 3 (K+) channel KCNK9 
Volt depend Ca+ channel 
Voltage-gated sodium chb-3 sub1 
KCNJ6 

RNA binding proteins 
Bruno-like 4 

Guidance/migration 
Adhesion/cytoskeletal 
Sema domain/7 thromospondin repeats 

Neurofilament 3 
-Ankyrin-like p. 1 
Complexin 2 
Carrier/transport 
Sodium CA+ exchanger 
ATPase, Cu++ trans, b -subunit 
-Similar to SNARE Vtilla-b-protein 
ATPase, Ca++ trans plas membr 2 
Putative Na-coupled cotransporter 

Secretion 
CPLX2 
SIC2A8 
AP3B2 
Solute carrier, member 11 
Solute carrier family 12 
Solute carrier family 6 
Solute carrier family 23 
Chromagranin B 

Others 
Calneuris 
Neurexophilin 
NRXN3 
MEGF11 
Cerebellin 
SPIR2 
-A Rhodopsin 1 
OSBP2 
-Psoriasin 
BCAN 
*Otoferlin 
CAC RR35 
CARPX 
RES4 
BCAN 
Parvin beta 

Placental 
PP13 
PP13-like 
PP13-like 
Ubiquitin-associated 3A 

(NCoA5) 
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(DNMT3A) 
(130482) 

(RGS10) 

(33591) 
(KCNAB2) 
(HCN4) 

(165681) 

(CANA1 H) 
(HSA243396) 

(BRUNOL4) 

(SEMA5A) 

(NEF3) 
(169415) 
(CPLX2) 

(Sic2A8) 
(ATP7B) 
(143187) 
(ATP2B2) 
(RKST1) 

(SLC6A11) 
(SLC12A5) 
(SLC6A11) 
(SLC23A1) 
(CHB B) 

(136832) 

(CBLN1) 

(163535) 

(149017) 

(OTOF) 

(PARVB) 

(56891) 
(FCGBP) 
(UBASH3A) 
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Rat-i cells with TSA did not alter the basal 
level of expression of genes within the putative 
REST/NRSF-dependent gene interval but did 
cause activation of the NeuroDI gene (Fig. 3B 
and fig. S5). However, we observed a derepres- 
sion of all tested genes in the interval flanked by 
the NaCh II and M4 REST/NRSF target genes 

Fig. 4. REST, CoREST, and MeCP2 
proteins associate with the 
3q22-32 genomic interval. (A) 
The endogenous promoters 
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tive repression via recruitment of specific 
HDACs and gene silencing by recruitment of 
CoREST complexes (10-12) to specific pro- 
moters in a cell type- and promoter-specific 
DNA methylation manner. 

Similar events occur in vivo, with CoREST, 
MeCP2, and Km9H3 markers of silencing prov- 
ing to be present on the NaCh II promoter in 
adult murine liver and heart (Fig. 5A). With the 
use of MEME and SP-STAR motif-finding 
algorithms (38), we located two motifs that are 
present preferentially within 250 bp of an ex- 
perimentally confirmed RE1/NRSE consensus 
site that may be related to the known REI/ 
NRSE consensus site (fig. S7). The full impor- 
tance of these motifs will need to be genetically 
studied, but one (RE2) is capable of both tran- 
scriptional repression and REST/NRSF binding 
(14). Thus, analogous to nucleation of gene 
silencing at specific sequences [polycomb 
group response elements (PREs)] (2), we sug- 
gest that the RE1/NRSE element, perhaps in 
concert with related sites, might nucleate silenc- 
ing of specific chromosomal regions. 

Recruitment of the corepressor CoREST to 
REST/NRSE gene targets appears to act as a 
molecular beacon for the silencing machinery, 
including MeCP2, SUV39H1, and HP1, to 
propagate and maintain a methyl CpG-depen- 
dent silent state across specific chromosomal 
intervals, including genes that do not contain 
REST/NRSF-binding sites (Fig. 5B). This 
model is consistent with observations that DNA 
methylation by itself is not sufficient for silenc- 
ing (41). MeCP2 appears to be a critical com- 
ponent of these events in Rat-1 cells, but other 
factors may operate in cell types where MeCP2 
is not expressed. The recruitment of SUV39H 1, 
in part via interactions with MeCP2 complexes, 
apparently leads to HP1 recruitment and chro- 
matin condensation in cultured cells and in vivo 
(Fig. 5B). The presence of K"'9 but not K'"4 
histone H3 across the rCh3 q22-34 region is 
consistent with CoREST-mediated recruitment 
of silencing machinery and the proposed epige- 
netic program (27, 28, 31, 35, 39). 

These observations further suggest that oth- 
er factors analogous to REST are likely to 
mediate the silencing of distinct chromosomal 
regions that regulate other biological programs, 
some via recruitment of CoREST complexes. 
Conversely, the expression of REST/NRSF ear- 
ly in brain development and the potential si- 
lencing of genes such as SMARCE suggest that 
REST/NRSF may also control important roles 
in early embryonic gene silencing. 
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Martian Meteorite Launch: 

High-Speed Ejecta from Small 

Craters 

James N. Head,' 2 H. Jay Melosh,l Boris A. Ivanov3 

We performed high-resolution computer simulations of impacts into homo- 
geneous and layered martian terrain analogs to try to account for the ages and 
characteristics of the martian meteorite collection found on Earth. We found 
that craters as small as -3 kilometers can eject -107 decimeter-sized frag- 
ments from Mars, which is enough to expect those fragments to appear in the 
terrestrial collection. This minimum crater diameter is at least four times 
smaller than previous estimates and depends on the physical composition of 
the target material. Terrain covered by a weak layer such as an impact-gen- 
erated regolith requires larger, therefore rarer, impacts to eject meteorites. 
Because older terrain is more likely to be mantled with such material, we 
estimate that the martian meteorites will be biased toward younger ages, which 
is consistent with the meteorite collection. 

Martian Meteorite Launch: 

High-Speed Ejecta from Small 

Craters 

James N. Head,' 2 H. Jay Melosh,l Boris A. Ivanov3 

We performed high-resolution computer simulations of impacts into homo- 
geneous and layered martian terrain analogs to try to account for the ages and 
characteristics of the martian meteorite collection found on Earth. We found 
that craters as small as -3 kilometers can eject -107 decimeter-sized frag- 
ments from Mars, which is enough to expect those fragments to appear in the 
terrestrial collection. This minimum crater diameter is at least four times 
smaller than previous estimates and depends on the physical composition of 
the target material. Terrain covered by a weak layer such as an impact-gen- 
erated regolith requires larger, therefore rarer, impacts to eject meteorites. 
Because older terrain is more likely to be mantled with such material, we 
estimate that the martian meteorites will be biased toward younger ages, which 
is consistent with the meteorite collection. 

Past models of the origin of the martian mete- 
orite suite (1-3), which supposed that the me- 
teorites were launched from relatively large 
craters, are unable to account for the presently 
known distribution of cosmic ray exposure 
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(CRE) ages (4). Using the known present-day 
lunar flux of impactors, extrapolated to Mars (5, 
6), the probability of even one 12-km-diameter 
crater forming on Shergottite-age terrain is 
-0.04. In contrast, CRE ages (Table 1) and 
petrology (7, 8) indicate that the known martian 
meteorites were launched in six or seven 
events. Thus, the observed launch frequency 
disagrees by two orders of magnitude with the 
estimated cratering rate. Appeals to statistics of 
small numbers are unsatisfactory, given the 
large number of launch events now recognized. 
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