
point, we measured thresholds with only one 
cue present (monocular texture) and with both 
cues present (texture and disparity) in sequen- 
tial blocks of trials. For the cues-inconsistent 

quadrants, thresholds were lower in the monoc- 
ular condition than when both disparity and 
texture were available. The opposite was true in 
the cues-consistent quadrants. This result illus- 
trates both the benefits (better discrimination 
when the cues specify changes in the same 

direction) and the costs (the loss of single-cue 
information associated with cue combination). 

Our data provide a clear demonstration of 

depth-cue fusion: shape information from 
texture and disparity cues is combined to 
form a single, fused percept such that some 
discriminations that could be made from sin- 

gle-cue estimates are not made (19). We also 
have evidence for a single, fused percept for 

shape information from haptics and vision, 
but in this intermodal case information from 

single-cue estimates is not lost. 
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The cytokine interleukin-21 (IL-21) is closely related to IL-2 and IL-15, and their 
receptors all share the common cytokine receptor y chain, yc, which is mutated 
in humans with X-linked severe combined immunodeficiency disease (XSCID). 
We demonstrate that, although mice deficient in the receptor for IL-21 (IL-21 R) 
have normal lymphoid development, after immunization, these animals have 
higher production of the immunoglobulin IgE, but lower IgG1, than wild-type 
animals. Mice lacking both IL-4 and IL-21R exhibited a significantly more pro- 
nounced phenotype, with dysgammaglobulinemia, characterized primarily by a 
severely impaired IgG response. Thus, IL-21 has a significant influence on the 
regulation of B cell function in vivo and cooperates with IL-4. This suggests that 
these yc-dependent cytokines may be those whose inactivation is primarily 
responsible for the B cell defect in humans with XSCID. 
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The receptor for the lymphoid-specific cyto- 
kine IL-21 is expressed on T, B, and NK cells 

(1, 2). IL-21 was initially reported to have a 

costimulatory T cell proliferative effect, to 

augment NK cell expansion and differentia- 

tion, and to augment B cell proliferation in 

response to CD40-specific antibodies, but to 
inhibit proliferation of B cells stimulated with 
the combination of IL-4 and IgM-specific 
antibodies (2). Subsequently, IL-21 was re- 

ported not to be required for NK cell devel- 

opment or expansion from murine spleno- 
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cytes and to oppose certain actions of IL-15 
on activated NK cells (3). The receptor for 
IL-21 contains IL-21R (1, 2) and also shares 
the common cytokine receptor y chain (%y) 
with IL-2, IL-4, IL-7, IL-9, and IL-15 (4, 5). 
Mutations in Yc result in XSCID (4, 6), a 
disease characterized by an absence of T and 
NK cells and nonfunctional B cells (7). Al- 

though the absence of T and NK cells can be 

explained by defective responses to IL-7 (8- 
10) and IL-15 (11-13), no cytokine has been 
linked to the B cell defect. To determine 
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whether defective signaling by IL-21 might 
contribute to this defect, we generated 
IL-21R-/- mice by using a targeting construct 
that eliminates the IL-21R extracellular and 
transmembrane domains (fig. Si). IL-21R-/- 
and wild-type mice are similar in the number 
and phenotype of thymocytes, splenocytes, 
peritoneal cells, and bone marrow cells, as 
detected using a panel of antibodies to mul- 
tiple surface markers (3, 14). IL-21R- - and 
wild-type splenocytes exhibited similar T cell 
proliferation in response to CD3-specific an- 
tibodies. Similarly, they showed nearly equal 
B cell proliferation in response to LPS, to 
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CD40-specific antibodies, and to the combi- 
nation of IL-4 and IgM-specific antibodies 
(14). Serum levels of IgG2a, IgG3, and IgM 
from naive mice were normal, but the 
amounts of IgGI and IgG2b were lower and 
of IgE were higher in IL-21R-/- mice (14). 
After immunization with ovalbumin, the nor- 
mal increase in IgG1 seen in wild-type mice 
was markedly impaired in IL-21R-/- mice; 
total serum IgGI was 4 to 5% of wild type 
(Fig. 1A), and antigen-specific IgG1 antibody 
was about 0.1% of that in wild-type mice 
(Fig. 1B). There was little, if any, difference 
in total serum IgG2a, IgG2b, IgG3, IgM, or 
IgA (Fig. 1A, left), but ovalbumin-specific 
IgG2b and IgG3 were significantly lower in 
IL-21R-/- mice (Fig. 1B), and total serum IgE 
levels were variable although markedly high- 
er in some IL-21R-/- mice (Fig. 1A, right). 
Immunization of IL-21R-/- mice with key- 
hole limpet hemocyanin (KLH) also revealed 
an impaired IgG1 response (Fig. 1C), and 
KLH-specific IgGI, IgG2b, and IgG3 levels 
were reduced to about 1/10th of the values for 
these subclasses in wild-type mice (Fig. ID, 

top). It was noteworthy that IgE production in 
IL-21R-/- mice was markedly increased (50- 
to 55-fold) (Fig. 1C), as was KLH-specific 
IgE (Fig. ID). Normal mice injected with 
IgD-specific antibodies respond by day 8 
with marked elevations of serum IgGI and 
IgE (15). In IL-21R-/- mice, IgG subclasses 
were similar to those in wild-type mice (IgG1 
tended to be lower, but the difference was not 
statistically significant); however, IgE re- 
sponses of IL-21R-/- mice were increased 
about 10-fold (fig. S2). 

Infection with Toxoplasma gondii induces 
a striking T helper cell type 1 (THI) CD4+ T 
cell-dependent interferon-y (IFN-y) re- 
sponse that is required for survival during the 
acute phase of infection (16). Serum IFN-y 
levels were similar in wild-type and 
IL-21R -/ mice 5 days after infection, as were 
IFN-y levels after in vitro culture with Tox- 
oplasma antigen (17). Correspondingly, six 
of seven mice in both wild-type and 
IL-21R-/- groups survived more than 100 
days. Despite similar survival, at day 100 in the 
IL-21R-/- mice, serum IgG1 was about one- 
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third that seen in wild-type mice (Fig. 1E, 
left), whereas IgE was increased about 20- to 
25-fold (Fig. IE, right). This increased IgE is 
noteworthy given that there is not normally 
an IgE response in mice to Toxoplasma gon- 
dii (18). IgG2a, IgG2b, and IgG3 were lower 
than in wild-type mice (Fig. IE). 

To further evaluate the impaired IgGI and 
augmented IgE response, splenic CD4+ T 
cells were stimulated with plate-bound CD3- 
specific antibody under TH1- or TH2-polariz- 
ing conditions, but neither IFN-y nor IL-4 
production was diminished (fig. S3A), sug- 
gesting that these differentiation pathways 
are not impaired in these mixed background 
(129 X C57BL/6) IL-21R-- mice. Moreover, 
when mice were immunized with KLH and 
spleen cells were restimulated in vitro, IFN-,y 
(fig. S3B) and IL-4 (fig. S3C) levels, as well 
as proliferation (fig. S3D), were relatively 
similar in IL-21R-- and wild-type mice. 
Spleen cells from IL-21R -- and normal mice 
generated comparatively similar levels of 
IFN-y (fig. S3E) and IL-4 (fig. S3F) after 4 
days of stimulation on plates coated with 
2C11 monoclonal antibody to CD3?. 

To determine whether the impaired IgG1 
response and augmented IgE production re- 
sulted from an obvious B cell defect, we 
cultured purified B cells with either the com- 
bination of CD40-specific antibodies plus 
IL-4 or LPS plus IL-4. As expected, produc- 
tion of IgGI (Fig. 2A) and IgE (Fig. 2B) was 
relatively similar in IL-21R-- and wild-type 
B cells, consistent with the lack of a require- 
ment of IL-21R for stimulation of B cells by 
these stimuli. However, the combination of 
CD40-specific antibodies plus IL-4 and IL-21 
boosted IgGI production in purified wild- 
type B cells to a significantly higher level 
than in B cells from IL-21R-- mice (Fig. 
2C). Thus, IL-21 affects IgGI production in 
normal murine B cells, and IL-21R-- mice 
have an intrinsic B cell defect. 

To evaluate the ability of IL-21R-/- mice to 
develop antibody-forming cells and memory B 
cells, we immunized mice with a T cell-depen- 
dent antigen, nitrophenyl (NP)-conjugated 
KLH. After exposure to this antigen, we eval- 
uated the number of antibody-forming cells as 
hapten (NP)-specific antibody-secreting cells 
and memory B cells as NP-specific antibody- 
expressing cells that did not express IgD, CD4, 
CD8, or F4/80 and that did not stain with 
propidium iodide (19, 20). In wild-type and 
IL-2 1R-- mice, there was at most only a mod- 
est difference in the number of splenic memory 
cells (fig. S4), but the number of hapten-specif- 
ic IgGI-forming cells in the spleen was much 
lower in the IL-21R-/- mice (Fig. 2D). Thus, 
the decreased IgGI could not be explained sim- 
ply by a decrease in memory cells and, instead, 
likely reflects diminished antigen-specific 
IgGl-producing cells. Serum NP-specific IgG1 
was also diminished (14). 
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Fig. 2. In vitro IgG1 and IgE production in IL-21R-/- mice. (A and B) B cells were stimulated with 
IL-4 plus either CD40-specific antibodies or LPS. Production (means + SEM) of IgG1 at day 4 (A) 
and IgE at day 7 (B) were measured by ELISA. (C) B cells from wild-type and IL-21R-/- mice were 
stimulated with the combination of CD40-specific antibodies + IL-4 + IL-21. IgG1 was measured 
at day 4. In B cells from wild-type mice, the combination of CD40-specific antibodies + IL-4 + 
IL-21 also gave higher IgG1 production than did CD40-specific antibodies + IL-4 without the 
addition of IL-21 (14). (D) NP-KLH was mixed with Ribi adjuvant and injected intraperitoneally. 
Twelve days later, the number of NP-specific IgG1-, IgM-, and IgE-forming cells in splenocytes was 
determined by ELISPOT. Shown are means + SEM from four IL-21R-/- and three wild-type mice. 
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Mice lacking yc exhibit a marked defect in 
B cell development (21, 22) as a result of 
defective IL-7 signaling (8, 9), whereas hu- 
mans with XSCID have normal numbers of B 
cells (4), presumably because of IL-7-inde- 
pendent signals that mediate human B cell 
development (4, 10). Nevertheless, humans 
with XSCID exhibit markedly defective B 
cell function (23-26). IL-21R-/- murine B 
cells are functionally abnormal but not as 
defective as in human XSCID. We hypothe- 
sized that if IL-7 signaling were left intact, 
but if signaling by another yc-dependent cy- 
tokine in addition to IL-21 were also inacti- 
vated, it might be possible to generate a 
phenotype in mice more closely resembling 
that found in human XSCID. Given the im- 
portance of IL-4 for B cell function, we ex- 
plored the effect that deficient IL-4 signaling 
might have in the context of IL-21 R deficien- 
cy using IL-4-/-IL-21R-/- double-knockout 
(DKO) mice. As with IL-21R-- mice, no 
gross developmental defects were observed 
compared with wild-type mice (fig. S5, A and 
B). However, naive IL-4-/-IL-21R-/- mice 
exhibited low serum levels of IgA and IgG 
subclasses, most strikingly in IgGl (Fig. 3A). 
In contrast, serum IgM levels were relatively 
normal, which is analogous to observations 
made in humans with XSCID. 

To further investigate immunoglobulin 

production by these animals, we immunized 
them with trinitrophenyl-conjugated chicken 
y-globulin (TNP-CGG), and the IL-4-'- 
IL-21R-/- mice showed severely impaired 
production of TNP-specific IgG1, IgG2a, 
IgG2b, and IgG3, and only about 10 to 20% 
of normal levels of IgM production (Fig. 3B). 
Strikingly, the strong up-regulation of IgE 
seen in the IL-21R-/- mice completely disap- 
peared in IL-4-/-IL-21R-/- mice (Fig. 3B, 
lower right panel), which indicated that the 
increased IgE in IL-21R-- mice was strictly 
dependent on IL-4. We further evaluated the 
ability of the IL-4--IL-21R-" mice to re- 
spond to two other antigens. KLH induced a 
similar immunoglobulin profile to TNP-CGG 
(Fig. 3C), showing severely impaired produc- 
tion of KLH-specific IgG1, IgG2a, and IgG3, 
and only about 10 to 20% of normal levels of 
IgG2b and IgM production. The response to 
NP-KLH was also impaired, although the 
defects in IgG1, IgG2a, and IgG3 responses 
were less severe (14). Although germinal 
centers were relatively normal in mice lack- 
ing either IL-4 or IL-21R (14), in IL-4-/-IL- 
21R-/- mice germinal centers were dis- 
organized, with decreased numbers of apo- 
ptotic bodies in macrophages (Fig. 3D), con- 
sistent with diminished somatic mutation and 
defective affinity maturation. These results 
indicate an important cooperative role for 
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Fig. 3. Defective im- 
WT munoglobulin produc- 

tion in IL-4-/- IL-21R-/ 
mice correlates with 
disorganized germinal 
center formation. (A) 
Defective immunoglob- 
ulin levels in IL-4-/- 
IL-21R-/- naive mice. 
(B) Serum TNP-specific 
immunoglobulin levels 
were measured by 
ELISA 10 days after 
peritoneal injection of 
TNP-CGG in complete 
Freund's adjuvant (CFA) 

ILd-44'IL-21 R-'m (DKO) in wild-type, IL-21R-/-, 
mice.Mc eeinetd 0IL-4-/-, and IL-4-- 

aL-21R-/- (DKO) mice. 
Shown is a repre- 
sentative result of four 
independent experi- 
ments. IL-4-/- mice on 
the C57BL/6 back- 
ground were from Jack- 
son Laboratory. (C) 
Serum KLH-specific 
immunoglobulin Levels 
were measured by 
ELISA 10 days after a 
peritoneal injection of 
KLH in CFA. Shown is 
one of three indepen- 

dent experiments; overall, one of six IL-4-/-IL-21 RR-/-/ mice did not show 
a decrease in IgG2a, whereas the other five mice were as shown in the 
Figure. (D) Defective germinal center formation in IL-4-/-IL-21R-/- 
mice. Mice were injected with 100 Ig TNP-CGG with CFA. The 
wild-type (WT) lymph node contains a well-organized germinal center 
(outlined) with blast cells and tingible body macrophages containing 
apoptotic bodies (arrows). The IL-4-/-IL-21R-/- DKO lymph nodes had 
barely recognizable, poorly organized germinal center-like areas with 
scattered apoptotic cells (arrowheads). The wild-type and DKO lymph 
nodes were readily distinguished by a histopathologist in a blinded 
fashion on the basis of the abnormal germinal centers in the DKO 
mice. 

fold dilution fold dilution 

IL-4 and IL-21 for normal germinal center 
function. 

Although IL-4 plays an essential role for 
IgE class switching, residual IgGI production 
in IL-4--- or Stat6-/- mice suggests the exis- 
tence of additional regulator(s) of IgG1 pro- 
duction. We demonstrate that IL-21 is such a 
molecule. It is noteworthy that, in IL-21R-/- 
mice, IgE production is elevated but IgGI is 
diminished. This potentially results from fa- 
vored utilization of a yl-independent mech- 
anism of IJ to E immunoglobulin class switch, 
or alternatively, class switching might pro- 
ceed so rapidly from pJ via -yl to E that IgGI 
levels are diminished. Other mechanisms for 
the increased IgG could also exist. 

Humans or dogs with XSCID can mount 
minimal specific IgM responses but almost no 
IgG response (27). In some patients lacking 
evidence of donor B cell engraftment, B cell 

function can be normalized after bone marrow 
transplantation (28). However, it is conceivable 
that small numbers of donor B cells may in fact 
have engrafted in this situation, perhaps outside 
the peripheral blood (e.g., in lymph nodes) and 
can thus respond to y,-dependent cytokines, 
particularly since the detection of B cell chi- 
merism can be difficult. Other data strongly 
support an intrinsic B cell defect in XSCID. 
First, in XSCID carrier females, who have nor- 
mal T cell function, immature surface IgM+ B 
cells exhibit random X chromosome inactiva- 
tion, but more mature, terminally differentiated 
IgM- B cells preferentially exhibit nonrandom 
X inactivation (29), which suggests that only B 
cells expressing the wild-type X chromosome 
become antibody-producing cells. Second, oth- 
er studies have concluded that effective humor- 
al reconstitution can only be achieved by the 
engraftment of normal donor B cells (30), so 

that if donor B cells do not engraft, patients 
typically require long-term intravenous -y-glob- 
ulin (31). In this regard, in data collated in 
2002, of 43 SCID patients who received hema- 
topoietic stem cell transplantation at Duke Uni- 
versity Medical Center, the 20 who exhibited 
normal B cell function either had documented 
donor B cell engraftment (18 patients) or have 
not been adequately evaluated (2 patients); 
moreover, effective response to immunization 
with (IX174 was only found when donor B 
cells engrafted (31). This is in contrast to the 
situation in humans with SCID resulting from 
IL-7R deficiency, in which intrinsic B cell func- 
tion is readily restored by engrafted T cells (32), 
and no intrinsic B cell defect has been noted. As 
noted above, in humans, IL-7 signaling can be 
inactivated without loss of B cell development, 
whereas IL-7 is vital for B cell development in 
mice (4). By generating mice defective in IL-4 
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and IL-21 signaling but which retain IL-7 sig- 
naling and thus B cell development, we have 
established in mice a phenotype that appears to 
closely resemble that of B cells from patients 
with XSCID, suggesting that defective signal- 
ing by IL-4 and IL-21 might explain the B cell 
defect in XSCID. 
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The Domestication of Social 

Cognition in Dogs 
Brian Hare,'-2* Michelle Brown,1 Christina Williamson,3 

Michael Tomasello2 

Dogs are more skillful than great apes at a number of tasks in which they must 
read human communicative signals indicating the location of hidden food. In 
this study, we found that wolves who were raised by humans do not show these 
same skills, whereas domestic dog puppies only a few weeks old, even those 
that have had little human contact, do show these skills. These findings suggest 
that during the process of domestication, dogs have been selected for a set of 
social-cognitive abilities that enable them to communicate with humans in 
unique ways. 
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Recent research has shown that primates pos- 
sess a number of sophisticated social-cogni- 
tive skills, with some theories of cognitive 
evolution predicting that highly social pri- 
mates are special in this regard (1, 2). For 
example, many species of nonhuman primate 
follow the gaze direction of conspecifics and 
humans to outside objects-an adaptive so- 
cial-cognitive skill for vicariously detecting 
food, predators, and important social interac- 
tions among group mates (3). Chimpanzees 
even follow the gaze direction of humans past 
distracting stimuli and behind barriers to a 
specific target, and they also understand that 
another individual cannot see something if its 
perspective is occluded by a barrier, thus 
demonstrating a fairly sophisticated under- 
standing of how the visual perception of oth- 
ers works (4-6). 
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Curiously, however, there is one task in- 
volving gaze-following at which chimpan- 
zees and other primates perform poorly. In 
the so-called object choice task, an experi- 
menter hides a piece of food in one of two 
opaque containers, and the subject, who did 
not see where the food was hidden, is allowed 
to choose only one. Before presenting the 
subject with the choice, the experimenter 
gives a communicative cue indicating the 
food's location, for example, by looking at, 
pointing to, tapping on, or placing a marker 
on the correct container. The majority of 
primates, as individuals, do not spontaneous- 
ly perform above chance levels on this task, 
no matter what the cue [although for possible 
exceptions, see (7, 8)], and those who even- 
tually perform well typically take dozens of 
trials or more to lear (9-17). In addition, 
when primates have been tested in more dif- 
ficult tests that require them to show flexible 
use of social cues (such as with novel or 
arbitrary social cues), without exception they 
do not use the cues provided (10, 11, 15). 

In contrast, the majority of domestic dogs 
(Canis familiaris) tested in the object choice 
paradigm effectively use many different vi- 
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sual cues presented by humans (such as look- 
ing at, pointing to, or touching the correct 
container). Dogs have even shown the ability 
to use novel social cues to find hidden food; 
for example, a human placing a physical 
marker on the correct container. They also are 
successful in more difficult tests, when a 
human moves toward the incorrect choice 
while giving the cue or when the cues are 
presented statically (for example, the dog 
enters the room to see a human or conspecific 
already looking at or pointing at the correct 
food location). Many dogs are skillful from 
the first trial, with no learning effects being 
observed within the experiment. Controls 
have ruled out the possibility that dogs use 
olfactory cues to find the hidden food (18- 
22). Although it seems from these studies that 
dogs are more skillful than primates in 
using human social cues to find hidden 
food, there has yet to be a direct compari- 
son between the ability of dogs and that of 
any primate species in their use of human 
social cues. Thus, in the first experiment, 
we compared chimpanzees (Pan troglo- 
dytes) and dogs (C. familiaris) in an object 
choice task using a common methodology. 

Another obvious question is how domes- 
tic dogs have acquired their skill in using 
human social cues. One hypothesis is that 
canids in general are unusually flexible in the 
types of social information they are capable 
of exploiting. For example, wolves, the clos- 
est relative of dogs (23), typically live in 
cooperatively hunting social groups, making 
it likely that they need to exploit the behavior 
of conspecifics and quarry alike, and this 
ability may then generalize to humans (19). 
The canid generalization hypothesis predicts 
that many canids (especially wolves) should 
perform at least as well as dogs on social 
tasks, as has been found previously with non- 
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ability may then generalize to humans (19). 
The canid generalization hypothesis predicts 
that many canids (especially wolves) should 
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