
hemoglobin variant that confers protection 
against malaria primarily to individuals ho- 
mozygous for the C allele (37). This is con- 
sistent with the assertion by Modiano and 
co-workers that the ideal epidemiological 
context for selection of such a protective 
genetic factor is one with very high rates of 
malaria transmission (37). The selection 
among human populations of other genetic 
traits protective against malaria appears also 
to be consistent with the above entomological 
inference because it offers good evidence that 
mortality due to P. falciparum has been com- 
mon only within the past 6000 years or less 
(38, 39). The tremendous rise in malaria 
transmission that accompanied the speciation 
of A. gambiae may have influenced the emer- 
gence of modem P. falciparum from a less 
pathogenic, ancestral parasite (27). The large 
increase in the rate of parasite transmission 
could have favored the selection of fast- 
growing, aggressive strains responsible for 
acute, short-lived infections. Such recent 
emergence of the pathogenic P. falciparum is 
supported by at least some of the genetic 
studies on the parasite (40, 41). 

The availability of the complete A. gambiae 
genome will greatly accelerate study of the 
evolution of this complex taxon and its siblings. 
The close linkage between the genome se- 
quence and the polytene chromosome comple- 
ment (42) is already being used to analyze 
sequences at the breakpoints of major polymor- 
phic inversions, particularly those that are diag- 
nostic for chromosomal forms. Molecular as- 
says for these inversions will allow analysis of 
the population genetics and ecology of chromo- 
somal forms to be extended to all life stages, 
including early instar larvae and adult males in 
which polytene chromosomes cannot be ana- 
lyzed directly. However, it will almost certainly 
be analysis of sets of alleles balanced by inver- 
sions covering genes in the central area of 2R 
that will be among the most important and 
rewarding challenges for post genomic study of 
A. gambiae and its siblings. 
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On the Origin of Interictal 

Activity in Human Temporal 
Lobe Epilepsy in Vitro 
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The origin and mechanisms of human interictal epileptic discharges remain 
unclear. Here, we describe a spontaneous, rhythmic activity initiated in the 
subiculum of slices from patients with temporal lobe epilepsy. Synchronous 
events were similar to interictal discharges of patient electroencephalograms. 
They were suppressed by antagonists of either glutamatergic or y-aminobutyric 
acid (GABA)-ergic signaling. The network of neurons discharging during pop- 
ulation events comprises both subicular interneurons and a subgroup of py- 
ramidal cells. In these pyramidal cells, GABAergic synaptic events reversed at 
depolarized potentials. Depolarizing GABAergic responses in neurons down- 
stream to the sclerotic CA1 region contribute to human interictal activity. 
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associated with sclerosis of the CA1 and CA3 

regions of the hippocampus (1). Intracranial 
electroencephalogram (EEG) records from hip- 
pocampal structures usually reveal interictal 

spikes, lasting 50 to 300 ms, which occur be- 
tween seizures. Similar activities may be in- 
duced in slice or animal models of limbic epi- 
lepsy (2-5), but whether they reproduce all 

aspects of the human pathology remains doubt- 
ful (6, 7). One way to resolve this problem is to 

associated with sclerosis of the CA1 and CA3 

regions of the hippocampus (1). Intracranial 
electroencephalogram (EEG) records from hip- 
pocampal structures usually reveal interictal 

spikes, lasting 50 to 300 ms, which occur be- 
tween seizures. Similar activities may be in- 
duced in slice or animal models of limbic epi- 
lepsy (2-5), but whether they reproduce all 

aspects of the human pathology remains doubt- 
ful (6, 7). One way to resolve this problem is to 

15 NOVEMBER 2002 VOL 298 SCIENCE www.sciencemag.org 15 NOVEMBER 2002 VOL 298 SCIENCE www.sciencemag.org 1418 1418 



study human epileptic tissue that has been re- 
moved therapeutically. However, although con- 
vulsants initiate epileptiform activity in human 
tissue, synchronous interictal-like discharges 
have rarely been observed (8-10). 

We carried out this study on specimens 
from 21 patients with mesial temporal lobe 
epilepsy (11). In each patient, magnetic res- 
onance imaging revealed a hippocampal at- 
rophy suggestive of sclerosis (12). Scalp or 
intracranial EEGs showed that seizures orig- 
inated in the temporal lobe. Unilateral resec- 
tion of part of this structure, including the 
hippocampal formation, was indicated be- 
cause seizures were poorly controlled by an- 
tiepileptic drugs (13). 

In slices prepared from this tissue (14), the 
size of both CA1 and CA3 regions was reduced 
and a laminar organization of pyramidal cell 
bodies was hard to detect (Fig. 1A). We record- 
ed neuronal activity with intracellular elec- 
trodes and extracellular tungsten electrodes, 
which detect firing of neurons located within a 
radius of about 100 jLm (15). Spontaneous ac- 
tivity was rarely evident in the CA3 or CA1 
regions or in the dentate gyrus (Fig. 1, B and C). 
However, we always detected large extracellu- 
lar spikes in records from the subiculum, an 
output region of the hippocampus projecting to 
the temporal cortex and normally innervated by 
CA1 pyramidal cell axons (16). In all 31 slices 
examined, barrages of unit spikes occurred 
rhythmically and synchronously in records 
from subicular sites separated by distances of 
up to 5 mm (Fig. 1, B and C). Synchronous 
activity was maintained for 8 to 12 hours and 
persisted when the subiculum was isolated (n = 

15), showing that it was generated within this 
structure (Fig. lD). The timing of events detect- 
ed from multiple electrodes suggested that syn- 
chronous discharges were often initiated from 
several subicular sites. 

The mean frequency of synchronous events 
in slices was 1.2 ? 0.6 Hz (n = 18), close to 
that of interictal spikes detected from scalp 
(1.1 ? 0.3 Hz; n = 14) or depth EEG records 
(1.3 ? 0.4 Hz; n = 4) made from the same 
patients (Fig. 2, A and B). When identically 
filtered (bandpass, 1 to 100 Hz), events from in 
vitro records and intracranial EEG events were 
similar, consisting of a fast, negative spike fol- 
lowed by a slower, positive deflection (Fig. 
2C). Their durations, from onset to peak posi- 
tivity, were comparable (33 ? 11 ms, n = 18 
slices; 65 ? 30 ms, n = 4 intracranial records). 
Discharges generated by subicular slices are 
thus comparable to interictal activity. 

We examined the role of signaling by 
glutamate and y-aminobutyric acid (GABA) 
in generation of this activity by using antag- 
onists of excitatory and inhibitory amino acid 
receptors (17). Synchronous discharges were 
reversibly suppressed (Fig. 3A) by applying 
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Fig. 1. Synchronous rhythmic activity is generated in the subiculum of human temporal lobe slices. 
(A) Sclerotic cell loss was evident in cresyl violet-stained sections of the CA3 (a) and CA1 (b) 
regions but less pronounced in the subiculum (c). (B) Diagram of a typical slice with gray areas 
corresponding to fibers. Rectangles labeled a to c indicate positions of photomicrographs in (A). (C) 
Spontaneous events were never observed from the CA3 and CA1 regions or the dentate gyrus (DG) 
(positions 1 to 5). Interictal-like activity was evident in records from the subiculum (SUB) (positions 
6 to 9) but disappeared again toward the entorhinal cortex (EC) (position 10). (D) Records from 
isolated slices confirmed that the subiculum generates the interictal-like activity. Two events from 
the same slice showed variability in generation and propagation of synchronous events. Recording 
positions throughout correspond to numbers on inset diagrams. 
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Fig. 2. In vitro interictal- 
like events resemble intra- 
cranial EEG records. (A) 
Synchronous spike and 

150 pV wave interictal events re- 
corded from three intracra- 
nial EEG electrodes located 
in the mesial temporal lobe 
of a patient. (B) A slice 
from the same patient 
generates spontaneous 
events of similar frequency 
and shape (filtered as the 
EEG; 1 to 100 Hz). (C) 
Comparison of three su- 

1200 pV perimposed events from in 
vitro and intracranial 
records reveals a similar 
form with a somewhat 
greater amplitude variabil- 
ity and longer duration for 
the intracranial interictal 
events. 
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Fig. 3. Excitatory and inhibitory synaptic signaling both contribute to spontaneous interictal-like 
events. Spontaneous events were blocked by NBQX and APV, antagonists at glutamate receptors 
(A) and suppressed by the GABAA receptor antagonist bicuculline (BIC) (B). (C to E) Different 
responses of subicular cells associated with interictal-like synchrony. Traces include intracellular 
records above and extracellular records below. (C) An interneuron was excited during the bursts. (D) 
A pyramidal cell received a small synaptic excitation followed by a larger inhibitory potential. (E) 
A pyramidal cell was excited and discharged simultaneously with interictal-like events. 
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phosphovaleric acid (APV) (n = 8) or 
6-cyano-7-nitroquinoxaline-2,3-dione 
(CNQX) and APV (n = 8). Surprisingly, 
these events were also blocked (Fig. 3B) by 
the GABAA receptor antagonists bicuculline 
(n = 3), picrotoxin (n = 2), and gabazine 
(n = 5). 

We made intracellular records (n = 133) 
to explore how both inhibitory and excitatory 
signaling were involved (Fig. 3, C to E). The 
mean resting potential of subicular cells was 
-62 + 10 mV, mean input resistance was 
35 ? 9 Mfl, and action potentials were over- 
shooting. Human subicular neurons dis- 
charged action potentials repetitively or in 
bursts, as do pyramidal cells of rodent subic- 
ulum (18, 19). Intemeurons (n = 9) were 
distinguished from pyramidal cells (n = 124) 
by distinct discharge patterns analogous to 
those of rodent hippocampus (18-20). 

Inhibitory cells discharged before and dur- 
ing interictal population bursts (Fig. 3C). Pyra- 
midal cells displayed different behaviors during 
synchronous events (Fig. 3, D and E). At rest- 
ing potential, large, inhibitory synaptic events, 
sometimes preceded by small excitatory synap- 
tic potentials, were detected in 78% (n = 97) of 
these neurons (Fig. 3D). In contrast, in a sub- 
group of 22% of pyramidal cells (Fig. 3E; n = 

27) interictal-like bursts were associated with 
synaptic events that were excitatory at rest. 
These cells fired before and during interictal 
events and presumably, together with the inter- 
neurons, act as pacemaker cells in generating 
interictal synchrony. 

The observation that inhibitory cells and a 
subgroup of pyramidal cells discharge during 
interictal-like bursts conforms to pharmacolog- 
ical data suggesting that both inhibitory and 
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activity. Potentially, the existence in subicular 
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an inhibited surround might explain the vari- 
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ever, in a single slice, pacemaker cells were not 
spatially segregated from those that were inhib- 
ited during population events. 

We compared synaptic events initiated in 
the different types of pyramidal cells by acti- 
vating afferent fibers. Extracellular stimuli trig- 
gered interictal-like discharges, which initiated 
firing in pacemaker cells (Fig. 4A; n = 14) 
and large inhibitory postsynaptic potentials (IP- 
SPs) in inhibited cells (22). In pacemaker cells, 
blocking glutamatergic excitation with NBQX 
and APV (n = 10) did not reveal hyperpolar- 
izing events. In four cells, the remaining syn- 
aptic potential reversed near resting potential. 
In the other six cells, the synaptic event was 
depolarizing and was blocked by GABAA 
antagonists (Fig. 4A). This depolarizing 
GABAergic signaling in pacemaker cells, sim- 
ilar to that of early development (23), presum- 
ably contributes to rhythm generation. 

GABAergic signaling is depolarizing (24) 
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when the reversal potential for ions passing 
through GABA receptor channels is more pos- 
itive than resting potential. Therefore, we com- 
pared, in pacemaker and inhibited cells, resting 
potential and the reversal potential of synaptic 
events remaining in the presence of glutamate 
receptor blockers (Fig. 4, B and C). In pacemak- 
er cells that discharged synchronously with in- 
terictal bursts, synaptic events recorded in 
NBQX and APV reversed at -55 ? 12 mV 
(n = 9), more depolarized (P < 0.025; Stu- 
dent's t test) than their resting potential of 
-67 ? 10 mV (n = 9). Synaptic events in 
inhibited cells, reversed at -72 ? 7 mV (n = 

25), while the resting potential, -62 + 8 mV 
(n = 25), was less hyperpolarized (P < 0.001). 
These data show that IPSPs reverse at potentials 
positive to rest (24, 25) in a subset of subicular 
neurons. 

This in vitro activity corresponds in sev- 
eral respects to interictal activity in mesial 
temporal lobe epilepsy. Epileptiform bursts 
were generated in the subiculum but not in 
other regions, which suggests that they did 
not result from general defects in slice con- 
dition. Interictal activity seems to be gener- 
ated by a minority of subicular neurons 
including intemeurons and a subset of pyra- 
midal cells (Fig. 3, C and E). Both glutama- 
tergic and GABAergic signaling are involved 
(Fig. 3, A and B), in line with previous 
suggestions from work on epileptic human 
tissue (8). Reciprocal interactions between 
the three cell types may underlie the genera- 
tion of this activity. The difference between 
discharging and inhibited pyramidal cells ap- 
parently results from different reversal poten- 
tials for GABAergic events. GABA-mediated 
synaptic events may also depolarize intemeu- 
rons, although we did not test this explicitly. 

One feature of the sclerotic hippocampus is 
the formation of aberrant connections between 
dentate granule cells (26, 27). Our data suggest 
that plastic changes also occur in the subiculum. 
Thus, loss of both postsynaptic (dentate gyrus 
to CA3) and presynaptic (CA1 to subiculum) 
cells initiates an epileptogenic plasticity. In the 
subiculum, the reactive plasticity includes 
changes in GABAergic signaling. A hyperex- 
citability in the subiculum would, unlike in the 
dentate region, permit propagation to other cor- 
tical structures. Our observation of depolarizing 
synaptic GABA responses in some subicular 
pyramidal cells recalls the GABAergic excita- 
tion of early development, which results from 
delayed expression of the KCC2 transporter 
(23, 24). Deafferentation may initiate a regres- 
sive switch in GABAergic response polarity 
from hyperpolarizing to depolarizing (25), per- 
haps in the most severely denervated cells. Un- 
derstanding changes in the subiculum (4, 25) 
induced by the loss of excitatory inputs from 
CA1 cells may eventually provide therapeutic 
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Transition State Stabilization by 
a Catalytic RNA 

Peter B. Rupert,' Archna P. Massey,2 Snorri Th. Sigurdsson,2 
Adrian R. Ferre-D'Amarel* 

The hairpin ribozyme catalyzes sequence-specific cleavage of RNA through 
transesterification of the scissile phosphate. Vanadate has previously been used 
as a transition state mimic of protein enzymes that catalyze the same reaction. 

Comparison of the 2.2 angstrom resolution structure of a vanadate-hairpin 
ribozyme complex with structures of precursor and product complexes reveals 
a rigid active site that makes more hydrogen bonds to the transition state than 
to the precursor or product. Because of the paucity of RNA functional groups 
capable of general acid-base or electrostatic catalysis, transition state stabi- 
lization is likely to be an important catalytic strategy for ribozymes. 
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The hairpin ribozyme catalyzes reversible, 
site-specific cleavage of the phosphodiester 
backbone of RNA through transesterification 
(1) (Fig. 1A). The ribozyme is fully active in 
vitro when the physiologic counterion Mg2+ 
is replaced with cobalt (III) hexammine (2- 
4). This complex ion mimics hydrated Mg2+ 
but cannot directly coordinate or activate wa- 
ter or RNA ligands. Therefore, nucleic acid 
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moieties alone must be responsible for pro- 
moting cleavage 106 times faster than the 
background rate. 

A crystal structure of a hairpin ribozyme 
bound to an inhibitor RNA has been reported 
(5). The minor grooves of two irregular heli- 
ces, stems A and B, dock to form the active 
site. One of the strands of stem A contains the 
scissile phosphate (Fig. 1B). In the crystal 
structure, the nucleotides flanking this phos- 
phate are splayed apart (Fig. 1C), aligning the 
2'-OH nucleophile (blocked with a methyl 
group to prevent cleavage) with the reactive 
phosphorus and the 5'-oxo leaving group. 
The in-line conformation (required for the 
second-order nucleophilic substitution trans- 
esterification) and biochemical and biophys- 
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