
REPORTS REPORTS 

grated circuits can be usefully transferred to 
chemical and biochemical analysis and process- 
ing in microfluidic devices. 

The two devices presented here illustrate 
that complex fluidic circuits with nearly ar- 
bitrary complexity can be fabricated using 
microfluidic LSI. The rapid, simple fabrica- 
tion procedure combined with the powerful 
valve multiplexing can be used to design 
chips for many applications, ranging from 
high-throughput screening applications to the 
design of new liquid display technology. The 
scalability of the process makes it possible to 
design robust microfluidic devices with even 
higher densities of functional valve elements, 
so that the ultimate complexity and applica- 
tion are limited only by one's imagination. 
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Diatoms are unicellular, eukaryotic algae that 
produce a wide variety of nanopattemed silica 
structures in a genetically controlled manner 
(1). Biosilica morphogenesis is an extremely 
rapid process that is accomplished under mild 
physiological conditions, thus exceeding the ca- 
pabilities of present-day materials engineering. 
Elucidating the molecular mechanisms of bio- 
silica formation is therefore expected to help 
researchers devise new synthetic routes to 
nanostructured silica materials (2, 3). 

Recently, silaffins and long-chain poly- 
amines have been identified as constituents of 
biosilica and shown to accelerate silica for- 
mation from a monosilicic acid solution in 
vitro (4, 5). On the basis of the physicochem- 
ical properties of polyamines, a phase sepa- 
ration model has been proposed that is able to 
explain the nanopatteming of biosilica (6). 
Silaffis are peptides that carry numerous 
posttranslational modifications. The silaffins 
from Cylindrotheca fusiformis contain lysine 
residues that are linked by their e-amino 
groups to long-chain polyamines (7). It is due 
to this modification that silaffi peptides can 
precipitate silica nanospheres at mildly acidic 
pH conditions (4), which likely represent the 
physiologically relevant pH range (8). 

Previously, the extraction and purification of 
silaffins has been achieved by the treatment of 
diatom shells with anhydrous hydrogen fluoride 
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(HF), a treatment known to cleave O-glycosidic 
and phosphate ester bonds (9). However, silaf- 
fins contain a high percentage of hydroxyamino 
acids, candidates for posttranslational modifica- 
tions. Therefore, the silaffins extracted to date 
may have lost functional modifications of hy- 
droxyamino acids. To address this concern and 
to be able to study silica precipitation activities 
of native silaffins, we developed a gentler meth- 
od for silaffin extraction. We found that native 
silaffins carry additional modifications that 
proved to be essential for biosilica formation. 

It has previously been shown that an acidic 
aqueous solution of ammonium fluoride is ca- 
pable of dissolving diatom biosilica (10) by 
converting silica into soluble ammonium 
hexafluorosilicate. When C. fusiformis cell 
walls are treated with an aqueous solution of 
ammonium fluoride at pH = 5, the complete set 
of silaffins and long-chain polyamines is solu- 
bilized. The apparent molecular masses of all 
silaffin species present in the aqueous ammoni- 
um fluoride extract are shifted toward higher 
molecular masses, indicating the existence of 
HF-labile modifications (11). An abundant pep- 
tide (apparent molecular mass of 6.5 kD) was 
purified from the ammonium fluoride extract 
(Fig. 1, lane 1) (12). After an additional treat- 
ment with anhydrous HF, this peptide exhibited 
a much higher electrophoretic mobility and 
comigrated in SDS-polyacrylamide gel electro- 
phoresis (SDS-PAGE) with silaffin-lA (Fig. 1, 
lanes 2, 3), which has previously been charac- 
terized from HF-extracted cell walls (4). NH2- 
terminal amino acid sequencing of this material 
resulted in the sequence SSXXSGSYSGS (G, 
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silaffins carry additional modifications that 
proved to be essential for biosilica formation. 

It has previously been shown that an acidic 
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pable of dissolving diatom biosilica (10) by 
converting silica into soluble ammonium 
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walls are treated with an aqueous solution of 
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of silaffins and long-chain polyamines is solu- 
bilized. The apparent molecular masses of all 
silaffin species present in the aqueous ammoni- 
um fluoride extract are shifted toward higher 
molecular masses, indicating the existence of 
HF-labile modifications (11). An abundant pep- 
tide (apparent molecular mass of 6.5 kD) was 
purified from the ammonium fluoride extract 
(Fig. 1, lane 1) (12). After an additional treat- 
ment with anhydrous HF, this peptide exhibited 
a much higher electrophoretic mobility and 
comigrated in SDS-polyacrylamide gel electro- 
phoresis (SDS-PAGE) with silaffin-lA (Fig. 1, 
lanes 2, 3), which has previously been charac- 
terized from HF-extracted cell walls (4). NH2- 
terminal amino acid sequencing of this material 
resulted in the sequence SSXXSGSYSGS (G, 
Gly; S, Ser; Y, Tyr; X, modified lysine residue) Gly; S, Ser; Y, Tyr; X, modified lysine residue) 
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that is diagnostic of silaffin-lA. Because treat- 
ment with an aqueous ammonium fluoride so- 
lution is highly unlikely to remove any covalent 
amino acid modification, the 6.5-kD peptide is 
expected to represent the native form of silaffin- 
1A and is thus termed natSil-lA. 

To elucidate the chemical nature of the 
HF-sensitive modifications in natSil-lA, we 
subjected the purified peptide to elemental 
analysis by energy dispersive X-ray analysis 
(EDXA) in a field emission scanning electron 
microscope (FESEM) (12). This analysis 
revealed a substantial amount of phospho- 
rus in natSil-lA that is absent in silaffin- 
1A, suggesting phosphorylation of the nu- 
merous hydroxyamino acids of the peptide 
backbone. After ashing (13) natSil-1A, 
about 8 mol of phosphate per mol of natSil- 
1A were found. With the use of mass spec- 
troscopy, natSil-lA isoforms (variations in 
polyamine chain length) exhibited a mass 
increase of 640 D as compared to the cor- 
responding silaffin-lA, peptides (7, 12). 
This difference perfectly matches the mo- 
lecular mass of eight phosphate groups at- 
tached to silaffin-lA1 peptides. 

The attachment sites of the phosphate 
groups within natSil-lA1 were analysed by 
31P nuclear magnetic resonance (NMR) spec- 
troscopy. The NMR spectrum (Fig. 1B) re- 
vealed the presence of four intense signals at 
1.8 to 2.2 ppm, which can be assigned to 
phosphorylated serine residues (12), and a 
further intense signal at 0.82 ppm. As is 
evident from comparison of the 1H-de- 
coupled and the nondecoupled spectra (Fig. 

Fig. 1. Structural analysis of nat- 
Sil-1A. (A) Tricine-SDS-PAGE 
analysis (22) of silaffins from C. 
fusiformis. Lane 1, 6.5-kD com- 
ponent isolated from cell walls 
after ammonium fluoride extrac- 
tion (12); lane 2, purified 6.5-kD 
component after treatment with 
anhydrous HF; lane 3, silaffins 
extracted from cell walls with 
anhydrous HF (bands from top 
to bottom: silaffin-2, silaffin-iB, 
silaffin-lA, long-chain poly- 
amines). (B) 31P NMR spectra of 
0.2 mM natSil-lA dissolved in 
200 mM sodium citrate, pH = 
5.0 (202.4 MHz resonance fre- 
quency, 20 s repetition time). 
Spectra were measured without 
(top, 7168 scans) and with (bot- 
tom, 4096 scans) 'H-decoupling 
at room temperature, using 85% 
H3PO4 as an external reference. 
Linewidth of the signal at 0.82 
ppm in the 1H-decoupled spec- 
trum is 8.4 Hz. (C) Schematic 
chemical structure of natSil-lAa. 
The annotation of charges within 
the molecule is tentative for a 
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1 2 3 
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17.0- - 

14.2 - 

6.5 - * 

3.5C- 

iB), the signal at 0.82 ppm is consistent with 
the structure of phosphorylated trimethyl-hy- 
droxylysine (12). This lysine derivative has 
previously been identified as a common or- 
ganic constituent in cell walls from many 
diatom species, including C. fusiformis (14). 
The signal ratio of the phosphorylated serine 
and trimethyl-hydroxylysine residues is 7 to 
1, indicating that all seven serine residues in 
natSil-1A1 are phosphorylated. 

Taken together, these data define the struc- 
ture of natSil-lA1 (Fig. 1C). Eleven of the 15 
amino acid residues are modified by ionized 
groups, introducing an extreme accumulation of 
both positive and negative charges. On the basis 
of earlier work (7), natSil-1A should also con- 
tain minor amounts of material derived from the 
related peptide silaffin-lA2. A more detailed 
analysis of natSil-1A by reversed-phase high- 
performance liquid chromatography (RP- 
HPLC) and electrospray ionization mass spec- 
troscopy (ESI-MS) revealed the presence of mi- 
nor amounts (about 20%) of phosphorylated 
derivatives of silaffin-lA2 (11). 

Previously, silica precipitation experiments 
were performed in vitro with a phosphate-con- 
taining buffer (4, 5, 7). To determine any effect 
of phosphate anions on silaffin-induced silica 
formation, we replaced the phosphate buffer 
with a sodium acetate buffer (12). NatSil-lA 
retained its activity to precipitate silica from a 
monosilicic acid solution. Within 10 min, an 
average of 86.5 (?+ 6) nmol silica was formed 
per nmol of added peptide (Fig. 2, black line). 
The precipitate consisted of nanospheres with 
diameters between 400 and 700 nm that ap- 

B I 
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solution around pH = 5. Most likely, not all amino groups are protonated, because the basicity of 
amino groups is reduced due to mutual repulsion of the positive charges within the polyamine 
chains (23). 

peared to be independent from each other and 
were rarely interconnected (Fig. 2, inset). Under 
the same conditions, silaffin-lA was incapable 
of precipitating silica (Fig. 2, green line), indi- 
cating that phosphate is required. Silica precip- 
itation activity of silaffin-lA was restored by 
adding phosphate to the solution. In the presence 
of 30 mM phosphate, silaffin-lA precipitated 
the same amount of silica as natSil-lA under 
phosphate-free conditions (Fig. 2, red line). 
However, at low phosphate concentrations (3 
mM), silaffin-lA precipitated significantly less 
silica than natSil-lA, and the amount of precip- 
itated silica reached a plateau value with in- 
creasing silaffin-lA concentrations (Fig. 2, blue 

50 - 
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0.1 0.2 0.3 0.4 0.5 0.6 
Silaffin (mM) 

Fig. 2. Silaffin-induced silica precipitation. The 
diagram exhibits the correlation between the 
amount of silaffin added to a buffered monosilicic 
acid solution (50 mM sodium acetate, pH = 5.5) 
and the amount of precipitated silica. Lines indi- 
cate silica precipitation using natSil-1A (black), 
silaffin-lA (green), silaffin-lA in the presence of 
30 mM phosphate (red), and silaffin-lA in the 
presence of 3 mM phosphate (blue). (Inset) SEM 
micrograph of the precipitate formed by 0.3 mM 
natSil-lA (scale bar, 1 txm). 

120; 

100. 

v 80' 

60 

- 40 

20- 

0 200 400 600 800 1000 

acetate concentration (mM) 

Fig. 3. Dependence of 31P NMR linewidth of 
natSil-1A on the salt concentration. The linewidth 
(full width at half maximum) of the trimethyl- 
hydroxylysine phosphate signal in 1H-decoupled 
31P NMR spectra is plotted against the buffer 
concentration (sodium acetate, pH = 5.5) present 
in the natSil-1A solution. 
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Fig. 4. Time-resolved analysis of silica moi,phogenesis in vitro. SEM images of 
silica structures formed (A) 3.5 min, (B) 4.5 min, (C) 5 min, and (D) 8 min after 
the addition of natSil-1A to a buffered monosilicic acid solution (50 mM sodium 

Cu 

tdES o ~~ 0 1 2 keV 

acetate, pH = 5.5). Scale bars, 2 ,um. (E) Elemental composition of silica 
structures in (A) as determined by EDXA. C, N, and P signals are diagnostic for 
natSil-1A. The strong Cu signal is caused by the sample holder (copper grid). 

line). This demonstrates that phosphate becomes 
the limiting factor. Therefore, we conclude that 
the numerous phosphate groups in natSil-lA 
serve as an intrinsic source of anions required 
for silica formation by diatoms. 

The zwitterionic structure of natSil-lA 
(polyamine moieties and phosphate groups) is 
likely to cause a self-assembly process via elec- 
trostatic interactions. To investigate this possibil- 
ity, we analyzed by 31p NMR spectroscopy the 
aggregation behavior of natSil-lA at pH = 5.5. 
If natSil-lA molecules self-assemble, a broaden- 
ing of 31p NMR linewidths is expected that 
depends on aggregate size (15). As exemplified 
for the signal of phosphorylated trimethyl-hy- 
droxylysine, the linewidth of this signal is 
strongly dependent on the ionic strength (Fig. 3). 
The linewidth strongly decreases with increasing 
salt concentrations. This effect demonstrates that 
natSil-lA molecules do indeed form large aggre- 
gates via electrostatic interactions. At low ionic 
strength, an aggregate size of at least 700 mole- 
cules can be estimated from the broadening of 
31p NMR linewidths (12, 16). We hypothesize 
that silaffin self-assembly is a prerequisite for 
biosilica formation, because such assemblies 
might provide the template for silicic acid poly- 
condensation. This would explain the inability of 
silaffin-lA to promote silica precipitation in the 
absence of phosphate. In contrast to natSil-lA, 
silaffin-lA molecules do not have the zwitteri- 
onic structure and therefore are unlikely to form 
aggregates. The addition of phosphate anions 
restores the silica precipitation activity of silaf- 
fin-lA, presumably because phosphate anions 
serve as ionic cross-linkers promoting the aggre- 
gation of polycationic silaffin-lA molecules. 

The large silica nanospheres (400 to 700 nm 
in diameter) formed by natSil-lA in vitro (Fig. 
2, inset) do not represent biologically relevant 
structures. Diatom biosilica is composed of par- 
ticles that are only 10 to 100 nm in diameter 
(17-20). However, the large spheres may only 
represent the artificial end product (due to in 
vitro conditions) of a morphogenetic process 
that starts out from biologically relevant silica 
structures. To investigate this possibility, we 
followed by scanning electron microscopy 
(SEM) the time dependence of natSil-lA-in- 

duced silica formation in vitro. Silica formation 
was initiated in a test tube by adding monosilicic 
acid to a buffered, phosphate-free solution of 
natSil-lA (time t = 0 min). At regular time 
intervals, aliquots were withdrawn from the test 
tube and investigated for silica-containing struc- 
tures by FESEM and EDXA (11). The first 
structures to be observed (t = 3 to 4 min) were 
extended flat networks of a branched, irregularly 
shaped phase (Fig. 4A). EDXA confirmed that 
these networks contained both silica and natSil- 
1A (Fig. 4E). Within only 2 min, spherical 
particles bud from the edges of this composite 
(t = 4.5 min, Fig. 4B). Simultaneously, bands 
with almost equidistant pinches (spacing -300 
nm) develop, giving the appearance of strands 
of intimately connected spheres (t = 5 min, Fig. 
4C). As pinching progresses, size differences 
between neighboring spheres become more pro- 
nounced, suggesting that some spheres grow by 
the consumption of others. At later stages (t = 8 
min, Fig. 4D), neighboring spheres are attached 
only by small necks and large differences in 
sphere sizes are observed, ranging from 100 nm 
up to 600 nm. Eventually (t 10 min) the 

budding process is complete, and large, inde- 
pendent silica spheres predominate (diameters 
400 to 700 nm). 

These observations show that the large silica 
nanospheres are produced from an irregularly 
shaped network of an apparently plastic silica- 
natSil-lA phase. It seems likely that the forma- 
tion of the silica-natSil-lA phase (Fig. 4A), 
rather than its conversion to large spheres, is an 
important step of in vivo biosilica morphogen- 
esis in C fusifonnis. The formation of biosilica 
in diatoms takes place within a membrane- 
bound compartment (silica deposition vesicle) 
that acts as a casting mold (21). The plastic 
natSil-lA-silica phase observed in vitro may 
represent the moldable biosilica material used to 
form the solid silica elements (girdle bands, 
central nodule, and fibulae) of C. fusiformis that 
do not exhibit any patterning by nanosized 
pores. 

The structures of in vitro silica precipitates 
were previously shown to be strongly influ- 
enced by combining different silaffms (4). Ac- 
cordingly, when additional native silaffins be- 

come available, combinations of these proteins 
may achieve an even more controlled process 
of silica formation. 
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