
and composition of the metal ions of the 
A-cluster. The presence of copper in the 
CODH/ACS complex eluded investigators 
previously, although it was reported in the 
early characterization of the CODH/ACS 
complex from a methanogenic archaebac- 
teria (12). 

The presence of copper is surprising 
given its very low solubility under anaero- 
bic conditions in the presence of sulfide. 
Although there are a number of examples 
of copper-containing proteins, the pres- 
ence of copper in this complex enzyme 
represents a new role for the metal in bio- 
logical systems. The occurrence of both 
copper and nickel at a single active site 
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has not been reported previously and may 
reflect the complexity of the biochemical 
reaction of acetyl-CoA condensation and 
disassembly. 

CODH/ACS is believed to be an an- 
cient enzyme. The ACS reaction has been 
considered as the primordial initiation re- 
action for a chemoautotrophic origin of 
life (13). Recent experiments aimed at 
mimicking prebiotic conditions indicate 
that activated acetate can be generated 
from CO2 in the presence of a slurry con- 
taining NiS and FeS. A role for copper in 
these prebiotic scenarios for the synthesis 
of activated acetate will without doubt be 
the subject of future studies. 
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Languages exhibit statistical struc- 
ture-that is, they show inhomo- 
geneities in the distribution of sounds, 

words, and phrases. The importance of this 
type of structure in learning a language is 
a matter of intense debate, and is tackled 
by Peiia et al. (1) on page 604 of this issue. 
The debate originated with Chomsky's 
1957 discussion of the sentence "Colorless 
green ideas sleep furiously" (2). This sen- 
tence can be immediately recognized as 
being well formed (compared to "Ideas 
colorless sleep furiously green") even 
though in both cases the probability that 
these words have previously occurred in 
this order is close to zero. Chomsky con- 
cluded that the statistical properties of lan- 
guage are not central to the characteriza- 
tion of linguistic knowledge, an insight 
that became part of the foundation of mod- 
ern linguistic theory. Whether statistical 
properties are important in language ac- 
quisition was largely set aside. Instead, re- 
search focused on how the child converges 
on the rules and other components of 
grammar using a combination of deductive 
(nonstatistical) reasoning and innate 
knowledge (3). 

Recently, there has been a resurgence of 
interest in statistical learning, with evidence 
showing that infants and young children in- 
corporate statistical cues when learning 
about the sounds of a language, vocabulary, 
and the structures in which words occur 
(4-6). These findings complement evidence 

The authors are in the Department of Psychology, 
University of Wisconsin, Madison, WI 53706, USA. E- 
mail: marks@lcnl.wisc.edu 

Languages exhibit statistical struc- 
ture-that is, they show inhomo- 
geneities in the distribution of sounds, 

words, and phrases. The importance of this 
type of structure in learning a language is 
a matter of intense debate, and is tackled 
by Peiia et al. (1) on page 604 of this issue. 
The debate originated with Chomsky's 
1957 discussion of the sentence "Colorless 
green ideas sleep furiously" (2). This sen- 
tence can be immediately recognized as 
being well formed (compared to "Ideas 
colorless sleep furiously green") even 
though in both cases the probability that 
these words have previously occurred in 
this order is close to zero. Chomsky con- 
cluded that the statistical properties of lan- 
guage are not central to the characteriza- 
tion of linguistic knowledge, an insight 
that became part of the foundation of mod- 
ern linguistic theory. Whether statistical 
properties are important in language ac- 
quisition was largely set aside. Instead, re- 
search focused on how the child converges 
on the rules and other components of 
grammar using a combination of deductive 
(nonstatistical) reasoning and innate 
knowledge (3). 

Recently, there has been a resurgence of 
interest in statistical learning, with evidence 
showing that infants and young children in- 
corporate statistical cues when learning 
about the sounds of a language, vocabulary, 
and the structures in which words occur 
(4-6). These findings complement evidence 

The authors are in the Department of Psychology, 
University of Wisconsin, Madison, WI 53706, USA. E- 
mail: marks@lcnl.wisc.edu 

from adults demonstrating the use of statis- 
tical information in comprehending and 
producing utterances, suggesting that simi- 
lar mechanisms may underlie the learning 
and use of language (7, 8). 

Although this research establishes that 
statistical information is used in language 
acquisition, the extent to which acquisition 
can be explained in these terms is not yet 
known. Peiia et al. (1) suggest one possibili- 
ty: Perhaps there are both statistical pro- 
cesses (based on frequency and distribution 
of elements in language) and grammatical 
processes (for example, learning and using 
rules). Statistical learning may be limited to 
simpler problems such as learning the 
sounds of a language and building a lexi- 
con. In contrast, the complexities of gram- 
mar may require other nonstatistical proce- 
dures. Thus, it seems that learning grammar 
begins where statistical learning ends. 

This reconcilist view is appealing be- 
cause it preserves the main tenets of the 
grammar approach while apparently accom- 
modating evidence about statistical learn- 
ing. In practice, however, it turns out to be 
difficult to establish a boundary between 
"grammatical" and "statistical" learning. 
Any corpus of linguistic stimuli contains a 
vast array of cues and potential generaliza- 
tions. Even in carefully designed experi- 
ments, conditions intended to isolate gram- 
matical processes may introduce correlated 
statistical cues that would support perfor- 
mance. For example, in the Pefia et al. 
study, adults listened to a continuous stream 
of nonsense words (see the table). Accord- 
ing to the authors, the subjects could extract 
statistical regularities from the speech 
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stream, but they could formulate rules only 
when brief pauses were added at word 
boundaries. Although the language supplied 
to subjects by Pefia et al. consisted of only 
nine words, the corpus derived by concate- 
nating these words afforded a large number 
of generalizations about the syllable se- 
quences (some of which are shown in the 
table). Pefia et al.'s conclusions about gram- 
matical learning concentrated on some 
properties of the syllable sequences, but 
other properties could also have cued sub- 
jects' responses. 

Two previous attempts to isolate a dis- 
tinct grammatical form of learning (9, 10) 
raised similar concerns. In each case sub- 
sequent analyses suggested that the behav- 
ior could instead have arisen from statisti- 
cal regularities that occurred simultane- 
ously with the grammatical patterns 
(11-13). Importantly, these additional 
findings (like the analysis presented in 
the table) do not show that grammatical 
learning does not exist, but rather that sta- 
tistical learning could also account for the 
results. Such findings also illustrate the 
difficulty of working back from observed 
behavior to the underlying regularities that 
gave rise to it (14). Knowing how many 
distinct procedures are involved in learn- 
ing a language is a critical issue; resolving 
it will require advances on both the "sta- 
tistical" and "grammatical" fronts. 

Discussions of statistical learning need 
to consider two questions illustrated by 
the "colorless" sentence. First, what kinds 
of statistics are people, particularly in- 
fants, capable of computing? As in the 
"colorless" example, most research has in- 
vestigated the transition probabilities be- 
tween words or syllables. The Pefia et al. 
study is a welcome step forward insofar as 
it addresses questions concerning nonad- 
jacent elements (15). Adult learners can 
track various types of statistics, including 
some second-order probabilities and long- 
distance dependencies (14, 16), but the 
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RULES OR STATISTICS IN LANGUAGE LEARNING? 
................................................................................................................................................... 

Familiarization stream 
... PURAKIBELIGATAFODUPUFOKITALIDUBERAGATARADUPULIKIBEFOGA... 

Generalizations Probability 
1. Words have PU_KI, BE_GA, TA-DU structure 1.0 

(Peia et al.'s rule, AXC) 
2. Initial syllables begin with a stop consonant 1.0 
3. Final syllables begin with a stop consonant 1.0 
4. Continuant consonants occur word medially 1.0 
5. PU predicts RA 0.33 
6. P U is not followed by BE 1.0 
7. KI predicts BE 0.5 
8. PURA predicts KI 1.0 
9. RAKI predicts BE 0.5 
10. PUBE is not followed by KI 1.0 

................................................................................................................................................... 

Experiment 1 forced choice 
Choice supported by Percentage chosen 

Word PURAKI 1 (rule), 2,3,4,5,8 73.3 
Part-word RAKIBE 3,7,9 26.7 

................................................................................................................................................... 

Experiment 2 forced choice 
Choice supported by 

1 (rule), 2, 3,4, 8 
3,6, 7,9, 10 

Percentage chosen 
49.8 
49.2 

D 

Rule-word PUBEKI 
Part-word RAKIBE 

(A) A section of the speech stream from the Peina et aL study (1). The three word families are illus- 
trated in different colors. (B) Ten of the generalizations available from the input in panel A, with 
their probabilities of occurrence in the familiarization stream. (C) The forced choice alternatives in 
Pena et a.'s experiment 1. The word alternative is favored over the part-word (a sequence that 
spans a word boundary) by Pefa et al.'s AXC rule (syllable A, followed by syllable C, with an inter- 
vening syllable X) as well as by more of the generalizations from panel B. (D) The forced choice al- 
ternatives in experiment 2. The rule-word (a new word generated by the AXC rule) and part-word 
alternatives were chosen equally often. In subsequent studies, introduction of brief pauses be- 
tween words in the familiarization phase increased choice of rule-words over part-words, because, 
according to Peia et al., the pauses switched subjects into a rule-learning mode. The pauses also 
simplify the word-segmentation task, increase the salience of properties 2-4, and make the part- 
words less like the familiarization words. 

limits on these capacities and whether in- 
fants have similar capacities have not been 
determined. It is also unclear how well 
such learning mechanisms fit the demands 
posed by human languages. However, re- 
cent results suggest that statistical patterns 
that occur in natural languages are ac- 
quired more readily than patterns not 
found in natural languages (16-18). Thus, 
constraints on learning may play a positive 
role in explaining why language learners 
acquire only some of the many generaliza- 
tions afforded by natural language. 

The second question asks: Over what 
types of information are statistics learned? 
Chomsky's example assumes that people 
are computing statistics at a single level of 
linguistic structure-between words in the 
"colorless" example, and between syllables 
in the Pefia et al. study. But language ex- 
hibits structure at multiple levels, each of 
which has its own statistical character. The 
"colorless" sentence is less puzzling when 
one looks beyond transition probabilities to 

other information that is used in compre- 
hension. For example, words fall into gen- 
eral types-green is a property or adjective, 
and sleep is an action or verb-that exhibit 
characteristic distributions. The "colorless" 
sentence conforms to these distributions in 
English, whereas "Ideas colorless sleep fu- 
riously green" does not (19). 

Our understanding of the contribution 
of statistical learning is limited by incom- 
plete knowledge of the kinds of statistics 
infants encode and whether these are the 
ones relevant to natural language. This 
view also leaves open the critical question 
of why only humans acquire language, as 
many other species are capable of simple 
forms of statistical learning. Again, there 
are parallel statistical and grammatical in- 
terpretations to explain this fact. For exam- 
ple, the statistics of natural language, 
which involve correlations over multiple 
types of information simultaneously, may 
be too complex for other species to learn; 
alternatively, other species may lack innate 

grammatical capacities that make language 
learning possible. 

Studies centered on understanding rule 
learning raise two major unresolved is- 
sues. First, the distinction between a rule 
and a statistical generalization remains un- 
clear. Many of the regularities summarized 
in the table could be called either rules or 
statistics. Second, how do infants actually 
find rules in the speech they hear? Is there 
a procedure that would yield the right rules 
under realistic learning conditions? The 
evidence for rule learning is mostly nega- 
tive: cases where learning occurs but there 
is no obvious statistical explanation. A the- 

ory explaining how rule learners arrive at 

exactly the correct generalizations given 
the complexities of their experience would 
represent substantial progress. 

The cascade of potential learning cues 
and generalizations implicit in the minia- 
ture language studied by Pefia et al. un- 
derscores the difficulties in determining 
how learners acquire the vastly richer 
structure of natural languages. To some 
extent this problem may be solved by 
grammar-specific forms of knowledge or 
learning. Statistical learning offers anoth- 
er potential explanation insofar as lan- 

guages may exhibit only those structures 
that learners are able to track. Thus, the 
structure of language may have resulted in 

part from constraints imposed by the lim- 
its of human learning. 
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