
plicated in Alzheimer's disease (Fig. 3B, cy- 
toskeletal/neuronal cluster). Most of the other 
known genes in this cluster are implicated in 
neuronal pathfinding and cell adhesion, in- 
cluding E-cadherin, which encodes a protein 
associated with the presenilin complex (28), 
and Notch, which encodes a substrate of the 
presenilin complex (29, 30). The cluster of 21 
genes is enriched for components and sub- 
strates of the presenilin complex. 

These data (24) provide an overview of 
gene expression profiles during Drosophila de- 
velopment. An unusually high proportion of the 
genes are developmentally regulated, but of 
4028 genes analyzed, only 903 are previously 
named Drosophila genes with a known mutant 
phenotype, biochemical function, or protein ho- 
mology. Fifty-one percent of the genes fall into 
50 clusters with correlation coefficients greater 
than 0.80 (for an annotated hierarchical cluster, 
see fig. S7, green bars). Virtually all the clusters 
contain genes with known or predicted roles in 
development or physiology, and genes to which 
a biochemical or cellular function has been 
assigned by the GO project (12) [all genes in 
these clusters are listed in the online database 
(24)]. A large number of the clusters contain 
genes that are used together in specific devel- 
opmental or biochemical processes. On the ba- 
sis of their developmental expression patterns, 
we have tentatively assigned 53% of the genes 
to a developmental or biological functional cat- 
egory (for example, male germ line, female 
germ line, eye, muscle, early zygotic, biochem- 
ical complex, or cell biology function). 

In addition to providing functional an- 
notation of the Drosophila genome, these 
studies are a step toward a complete de- 
scription of the genetic networks that con- 
trol development. 
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Structural Basis for Gluten 

Intolerance in Celiac Sprue 
Lu Shan,1 Oyvind Molberg,5 Isabelle Parrot,1 Felix Hausch,1 
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Celiac Sprue, a widely prevalent autoimmune disease of the small intestine, is 
induced in genetically susceptible individuals by exposure to dietary gluten. A 
33-mer peptide was identified that has several characteristics suggesting it is 
the primary initiator of the inflammatory response to gluten in Celiac Sprue 
patients. In vitro and in vivo studies in rats and humans demonstrated that it 
is stable toward breakdown by all gastric, pancreatic, and intestinal brush- 
border membrane proteases. The peptide reacted with tissue transglutaminase, 
the major autoantigen in Celiac Sprue, with substantially greater selectivity 
than known natural substrates of this extracellular enzyme. It was a potent 
inducer of gut-derived human T cell lines from 14 of 14 Celiac Sprue patients. 
Homologs of this peptide were found in all food grains that are toxic to Celiac 
Sprue patients but are absent from all nontoxic food grains. The peptide could 
be detoxified in in vitro and in vivo assays by exposure to a bacterial prolyl 
endopeptidase, suggesting a strategy for oral peptidase supplement therapy for 
Celiac Sprue. 

Structural Basis for Gluten 

Intolerance in Celiac Sprue 
Lu Shan,1 Oyvind Molberg,5 Isabelle Parrot,1 Felix Hausch,1 

Ferda Filiz,1 Gary M. Gray,2 Ludvig M. Sollid,5 
Chaitan Khoslal 3.4* 

Celiac Sprue, a widely prevalent autoimmune disease of the small intestine, is 
induced in genetically susceptible individuals by exposure to dietary gluten. A 
33-mer peptide was identified that has several characteristics suggesting it is 
the primary initiator of the inflammatory response to gluten in Celiac Sprue 
patients. In vitro and in vivo studies in rats and humans demonstrated that it 
is stable toward breakdown by all gastric, pancreatic, and intestinal brush- 
border membrane proteases. The peptide reacted with tissue transglutaminase, 
the major autoantigen in Celiac Sprue, with substantially greater selectivity 
than known natural substrates of this extracellular enzyme. It was a potent 
inducer of gut-derived human T cell lines from 14 of 14 Celiac Sprue patients. 
Homologs of this peptide were found in all food grains that are toxic to Celiac 
Sprue patients but are absent from all nontoxic food grains. The peptide could 
be detoxified in in vitro and in vivo assays by exposure to a bacterial prolyl 
endopeptidase, suggesting a strategy for oral peptidase supplement therapy for 
Celiac Sprue. 

Celiac Sprue (also known as Celiac disease or 
gluten-sensitive enteropathy) is an autoim- 
mune disease of the small intestine caused by 
the ingestion of gluten proteins from widely 
prevalent food sources such as wheat, rye, 
and barley. In many human leukocyte antigen 
(HLA) DQ2 (or DQ8)-positive individuals, 
exposure of the small intestine to gluten in- 
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duces an inflammatory response, leading to de- 
struction of the villous structure of the intestine 
(1-3). It commonly appears in early childhood, 
with severe symptoms including chronic diar- 
rhea, abdominal distension, and failure to 
thrive. In many patients, symptoms may not 
develop until later in life, when the disease 
symptoms include fatigue, diarrhea, and weight 
loss due to malabsorption, anemia, and neu- 
rological symptoms. Celiac Sprue is a life- 
long disease, and if untreated it is associated 
with increased morbidity and mortality (4, 5). 
Despite its high prevalence in most popula- 
tion groups (> 1:200) and serious manifesta- 
tions, the only effective therapy is strict di- 
etary abstinence from these food grains. 
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The principal toxic components of wheat 33-mer, the peptide WQIPEQSR was also 
gluten are a family of closely related Pro- and identified and was used as a control in many 
Gin-rich proteins called gliadins (6, 7). How- of the studies that followed. Under similar 
ever, given the enormous biological diversity proteolytic conditions, myoglobin (another 
and unusual chemistry of gluten proteins, and common dietary protein) is rapidly broken 
the absence of satisfactory assays for gluten down into much smaller products (18). No 
toxicity, the structural basis for gluten toxic- long intermediate is observed to accumulate. 
ity in Celiac Sprue remains unclear (2). Not- The small intestinal brush-border mem- 
withstanding the heterogeneity of T cell brane (BBM) enzymes are vital for breaking 
epitopes in gluten, a few epitopes appear to down any remaining peptides from gastric or 
account for most of the x-gliadin-specific pancreatic digestion into amino acids, dipep- 
recognition by CD4+ T cells from patients (8, tides, or tripeptides (19). BBM fractions were 
9). These peptides are also substrates of tissue prepared from rat small intestinal mucosa 
transglutaminase (tTGase) (10, 11), and the (20). The specific activities of known BBM 
products of this enzymatic reaction bind to peptidases were verified to be within the 
the HLA DQ2 molecule (12, 13). previously reported range (21). Whereas the 

To identify the physiologically stable re- half-life of disappearance of WQIPEQSR 
gions of gliadin, recombinant ca2-gliadin, a was -60 min in the presence of BBM protein 
representative a-gliadin (14), was digested (12 ng/[l), the half-life of LQLQPF- 
with gastric and pancreatic enzymes and an- PQPQLPYPQPQLPYPQPQLPYPQPQPF 
alyzed by liquid chromatography coupled digestion was >20 hours (18). Therefore, the 
with tandem mass spectroscopy and ultravi- latter peptide must remain intact throughout 
olet spectroscopy (LC-MS/MS/UV) (15) the digestive process in the stomach and 
(Fig. 1). The most noteworthy of the diges- upper small intestine and is poised to act as a 
tive products was a relatively large fragment, potential antigen for T cell proliferation and 
the 33-mer LQLQPFPQPQLPYPQPQLPYPQP-intestinal toxicity in genetically susceptible 
QLPYPQPQPF (residues 57 to 89) (16). This individuals. 
peptide was of particular interest for two To validate the initial findings with rat 
reasons: (i) Whereas most other relatively BBM preparations in human small intestine, 
stable proteolytic fragments were cleaved to we prepared small intestinal biopsy material 
smaller fragments when the reaction times taken as part of the care of five individuals, 
were extended, the 33-mer peptide remained one of whom carried the diagnosis of Celiac 
intact despite prolonged exposure to pro- Sprue and was in remission. The other four 
teases. (ii) Three distinct patient-specific T patients proved to have normal intestinal his- 
cell epitopes identified previously in T cell tology. LQLQPFPQPQLPYPQPQLPYPQP- 
proliferation assays (8, 17) are present in this QLPYPQPQPF, QLQPFPQPQLPY (an in- 
peptide, namely, PFPQPQLPY, PQPQL- temal sequence from the 33-mer used as a 
PYPQ (three copies), and PYPQPQLPY (two control), WQIPEQSR, and other control pep- 
copies). In addition to this Gln- and Pro-rich tides (100 FtM) were incubated with BBM 

Fig. 1. Products of a-gliadin composil 
gastric plus pancrea- 100, 
tic protease mediated - 80- LC-MS trace 
digestion of a2-glia- = 60- 
din under physiologi- = 40- 
cal conditions. Analy- . 20 
sis was performed by Xo ?- *L 

reverse-phase liquid 000 LC-UV280trace 
chromatography cou- - 

75 99.5 
pled with electrospray a 
ionization mass spec- 99.0- 
troscopy (LC-ESIMS). , 
The longest peptides 4 6 8 10 

are highlighted by ar- 
rows coded to indicate the sequence of a2-gliadin 
(bottom right). Although pepsin-catalyzed cleav- 
age of the NH2-terminal Leu residue of the red- 
coded 33-mer was observed only in prolonged 
incubations, this residue was included in the later 
analysis because it stabilized the peptide from 
noncatalytic conversion into pyro-GIn peptide. 
(Pyroglutamination readily occurs during both 
synthesis and biochemical assays involving pep- 
tides with NH2-terminal Gin residues.) 

te digestionj 

+ |_ ,_,_ _ 

Time (min) 

MVRVPVPQLQPQNPSQQQPQEQVPLVQ 

QQQFPGQQQPFPPQQPYPQPQPFPSQQ 

PYLQLQPFPQPQLPYPQPQLPYPQPQL 

PYPQPQPFRPQQPYPQSQPQYSQPQQP 

ISQQQQQQQQQQQQKQQQKQQQILQQ 

ILQQQLIPCRDVVLQQHSIAYGSSQVL 

QQSTYQLVQQLCCQQLWQiPEQSRCQA 

IHNVVHAIILHQQQQQQQQQQQQPLSQ 

VSFQQPQQQYPSGQGSFQPSQQNPQAQ 

GSVQPQQLPQFEEIRNLALETLPAMCN 
VYIPPYCTIAPVGIFGTNYR 

prepared from each human biopsy (final ami- 
nopeptidase N activity -13 ILU/LI, total pro- 
tein -1 ILg/jLl) at 37?C for varying time 
periods. Although QLQPFPQPQLPY, WQIP- 
EQSR, and other control peptides were near- 
ly completely proteolyzed within 1 to 5 
hours, the 33-mer peptide remained largely 
intact for at least 15 hours (Table 1). 

The proteolytic resistance of the 33-mer 
gliadin peptide, observed in vitro with BBM 
from rats and humans, was confirmed in vivo 
by a perfusion protocol in intact adult rats 
(22). Whereas >90% of QLQPFPQPQLPY 
was proteolyzed in the perfusion experiment, 
the 33-mer gliadin peptide was highly resis- 
tant to digestion (Fig. 2). These results dem- 
onstrate that the 33-mer peptide is very stable 
when it is exposed to the BBM of the mam- 
malian upper small intestine. 

Regiospecific deamidation of immuno- 
genic gliadin peptides by tTGase increases 
their affinity for HLA DQ2 as well as the 
potency with which they activate patient-de- 

A 0m/ 

}J/ 0 min 

_ 20 min B J* 

20 min 

5 10 15 20 25 30 
(min) 

Fig. 2. In vivo BBM digestion of peptides. (A) 
Reverse-phase liquid chromatography at UV 
215 nm (RPLC-UV215) trace of 25 FLM of 
LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF 
(shown by arrow) before perfusion and after 
perfusion of a 20-cm segment of upper small 
intestine (residence time = 20 min). (B) RPLC- 
UV215 trace of 50 JLM of QLQPFPQPQLPY 
(shown by arrow) before perfusion and after 
perfusion of the 20-cm segment (residence 
time = 20 min). *, pyroQLQPFPQPQLPY. 

Table 1. Human BBM catalyzed digestion (%) 
(over 15 hours) of LQLQPFPQPQLPYPQPQLPYPQ- 
PQLPYPQPQPF ("33-mer"), QLQPFPQPQLPY 
("Control A"), and WQIPEQSR ("Control B") de- 
rived from a panel of adult biopsies. Asterisk indi- 
cates participant diagnosed with Celiac Sprue. 

33-mer Control A Control B 

H1 <20 90 90 
H2 <20 61 85 
H3 <20 87 95 
H4* <20 96 95 
H5 <20 96 95 
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rived gluten-specific T cells (8, 9, 14, 23). 
The specificity of tTGase for certain short 
antigenic peptides derived from gliadin is 
higher than its specificity toward its physio- 
logical target site in fibronectin (24, 25). The 
kinetics and regiospecificity of deamidation 
of the 33-mer c-gliadin peptide were there- 
fore measured. The kcatKM (specificity) was 
higher than that reported for any peptide stud- 
ied thus far (26). Analysis with LC-MS and 
MS revealed that, although the deamidation 
pattern of LQLQPFPQPQLPYPQPQLPYPQ- 
PQLPYPQPQPF was complex, mono-deami- 
dated products at the underlined Gln residues 
accumulated with time. This is consistent 
with the observed regioselectivity of human 
tTGase (8, 24). Because preliminary results 
indicate that tTGase activity is associated 
with the BBM of intestinal enterocytes (18, 
27), it is likely that dietary intake of even 
small quantities of wheat gluten will lead to 
the build-up of sufficient quantities of this 
33-mer gliadin peptide in the intestinal lu- 
men, which will be recognized and processed 
by tTGase. 

The centrality of this 33-mer in the patho- 
genesis of Celiac Sprue is highlighted by the 
observation that not only is the deamidated 
product an excellent substrate for tTGase, but 
it is a very potent stimulator [median effec- 
tive concentration (ECo5) -80 nM] of three 
different HLA DQ2-restricted T cell clones 
derived from intestinal biopsies of Celiac 
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Sprue patients stimulated with gluten (28) 
(Fig. 3). Each clone has been shown to rec- 
ognize a distinct epitope found in the 33-mer 
(PFPQPQLPY, PQPQLPYPQ, and PYPQP- 
QLPY, respectively) (8, 17). Moreover, 
freshly prepared T cell lines from most Celiac 
Sprue biopsies are stimulated by one or more 
of these epitopes, suggesting collective im- 
munodominance of these epitopes. Testing of 
randomly selected polyclonal T cell lines 
from 14 different Celiac Sprue patients (Ta- 
ble 2) revealed that each line was very sen- 
sitive to the deamidated 33-mer peptide 
(EC5o < 1 jiM). Therefore, we interpret the 
combination of metabolic stability and mul- 
tivalency of the 33-mer to endow it with 
exceptional toxic potency against the small 
intestinal mucosa. These findings vividly re- 
inforce the pathological importance of recent 
observations that initiation of a T cell-medi- 
ated inflammatory response requires the mul- 
tivalent engagement of T cell receptor-major 
histocompatibility complexes (MHCs) by an 
antigenic peptide (29, 30). They also suggest 
how this multivalent peptide (or its selective- 
ly deamidated form), which is intrinsically 
inert toward digestive breakdown, might be 
used orally for vaccination, prevention, and/ 
or treatment of Celiac Sprue (31, 32). 

Sequence alignment searches using 
BLASTP in all nonredundant protein databases 
revealed several homologs (E value < 0.001) of 
the 33-mer gliadin peptide. Food grain-derived 

--- P1 +tTGase 
--- PQPQLPYPQPQLPY+tTGase 

0 A 

10 100 1000 

Peptide concentration (nM) 

homologs were only found in gliadins (from 
wheat), hordeins (from barley), and secalins 
(from rye), all of which are toxic cereals in the 
Celiac diet (6) (fig. Sl). Nontoxic food grain 
proteins, such as avenins (in oats), rice, and 
maize, do not contain homologous sequences to 
the 33-mer gliadin. In contrast, a BLASTP 
search with the entire a2-gliadin sequence iden- 
tified food grain protein homologs from both 
toxic and nontoxic proteins. On the basis of 
available information regarding the substrate 
specificities of gastric, pancreatic, and BBM 
proteases and peptidases (19), we predict that, 
although many gluten homologs of the 33-mer 
gliadin peptide contain proteolytic sites and are 
therefore likely to be digested over time, several 
sequences from wheat, rye, and barley can be 
expected to be comparably resistant to gastric 
and intestinal proteolysis as LQLQPF- 
PQPQLPYPQPQLPYPQPQLPYPQPQPF 
(33). 

The primary sequence of the 33-mer gli- 
adin peptide also had homologs among a few 
nongluten proteins. Among the strongest ho- 
mologs were internal sequences from pertac- 
tin (a highly immunogenic protein from Bor- 
detella pertussis) and a mammalian protein 
tyrosine phosphatase of unknown function. In 
both cases, available information suggested 
that this homology could have biological rel- 
evance. For example, the region of pertactin 
that is homologous to the 33-mer gliadin 
peptide is known to be part of the immuno- 

C --- Pl+tTGase 
-*- PQPQLPYPQPQLPY+tTGase 
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Fig. 3. Stimulation of three HLA DQ2-restricted T cell clones (TCC) 
derived from intestinal biopsies of Celiac Sprue patients by the 
33-mer and shorter epitopes. EC50 indicated by arrows. Maximal 

Table 2. Comparative response of human polyclonal T cell lines (coded by 
numbers) derived from intestinal biopsies of Celiac Sprue patients to LQLQPF- 
PQPQLPYPQPQLPYPQPQLPYPQPQPF (33-mer) and representative gliadin 
epitopes defined by earlier studies. Each antigen was pretreated with tTGase 
to elicit an enhanced T cell response. Peptide 1206 (YQQLPQPQQPQQSF- 

responses used for the estimation of ECso values were determined in 
independent experiments. (A) TCC 380.E2. (B) TCC 430.1.135. (C) TCC 
370 E-3.19. 

PQQQRPF; corresponding to y-I); Peptide 1258 (PQPQLPYPQPQLPY; corre- 
sponding to a-ll); Peptide 1306 (IIQPQQPAQ; corresponding to y-II); Peptide 
1317 (LQPQQPFPQQPQQPYPQQPQ; corresponding to -y-III + -V). Blank 
cell implies no response was observed for these peptides against the corre- 
sponding T cell lines at deamidated peptide concentrations up to 10 JM. 

ECso (PIM) 

411.1 412.1 432.1.4 450.2.2 422.02.4.2 488.3.1 437.1.1 425.1 419.1 435.6 467.2E.1 410.1 380.1 421.1.4 

Peptide 1206 2.5 
Peptide 1258 1.6 2.5 0.62 0.62 0.16 1.6 2.5 4 0.16 0.6 2.5 3 6 
peptide 1306 0.65 2.5 
Peptide 1317 2.5 2.5 1.6 5 3 
33-mer 0.1 0.15 0.05 0.04 0.05 0.08 0.08 0.4 0.015 0.04 0.1 0.4 0.6 0.6 

www.sciencemag.org SCIENCE VOL 297 27 SEPTEMBER 2002 

1 

2277 



REPORTS 

dominant segment of the protein (34). In the 
case of the phosphatase homolog, the protein 
is known to undergo vesicular trafficking into 
the cytoplasmic Golgi (35). By analogy with 
the current understanding of how gliadin pep- 
tides are acquired by HLA-DQ2 via a 
tTGase-mediated pathway (3), we hypothe- 
sized that these Pro-Gln-rich segments of 
both pertactin and the phosphatase are likely 
to be high-affinity tTGase substrates. To test 
this hypothesis, we synthesized the corre- 
sponding peptides and measured the selectiv- 
ity of tTGase for these. As predicted, both 

they are intrinsically resistant to the action of 
pepsin, trypsin, chymotrypsin, and elastase. 
By flanking such epitopes with proteolyti- 
cally stable high-affinity tTGase substrates 
[e.g., the sequence PQPQLPYPQPQLP from 
gliadin (21)], they could be protected from 
exposure to potent pancreatic and intestinal 
exopeptidases and would therefore have suf- 
ficiently long half-lives to permit efficient 
stimulation of the gut-associated lymphoid 
system. Secondary structural studies using 
circular dichroism spectroscopy on the 33- 
mer gliadin peptide and its homologs from 

evaluated in vitro (Fig. 4A) and in vivo using 
the rat intestinal perfusion model (Fig. 4B). 
In the latter assay, the synergistic effect of 
PEP and BBM peptidases was evident. More- 
over, the T cell stimulatory potential of PEP- 
treated peptide was shown to decrease rapidly 
(Fig. 4C). Given the preference of PEP for 
Pro-Xaa-Pro tripeptides (40) and the abun- 
dance of this motif in immunogenic peptides 
from gluten (41), these results highlight the 
potential of detoxifying gluten in Celiac 
Sprue patients by peptidase therapy. 
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