
MDMA doses of 2 mg/kg each leads one to 
question what distinguishes this particular 
drug regimen from the 4-day, twice daily, 
higher-dose regimen that engenders selective 
serotonergic neurotoxicity (16-22). One pos- 
sibility is that the nonlinear pharmacokinetic 
profile of MDMA, such as that demonstrated 
in humans in the setting of closely spaced 
repeated dosing (30, 31), leads to prolonged 
elevated brain levels of MDMA (or its me- 
tabolites) and that protracted exposure to 
MDMA renders dopamine neurons vulnera- 
ble to its toxic effects. An alternative (al- 
though not mutually exclusive) explanation is 
that repeated closely spaced doses of MDMA 
lead to higher elevations in body temperature, 
which is known to augment MDMA neuro- 
toxicity (32). Additional studies are needed to 
evaluate these possibilities, in addition to al- 
terative hypotheses. 

In light of the present findings, and given 
the fact that MDMA use is widespread and 
increasing, one might ask why more cases of 
MDMA-induced Parkinsonism (33) have not 
been reported. There are multiple potential 
explanations, but only two will be mentioned. 
First, Parkinsonism does not generally be- 
come clinically apparent until more than 70 
to 80% of brain dopamine has been depleted. 
Therefore, substantial MDMA-induced dopa- 
minergic neurotoxicity could occur yet re- 
main occult until unmasked by other process- 
es (such as drug-induced interference with 
dopaminergic neurotransmission or decline in 
brain dopamine with advancing age). Second, 
until now, the potential for MDMA to dam- 
age brain dopamine neurons in primates has 
not been appreciated and, therefore, MDMA 
neurotoxicity has not been considered in the 
differential diagnosis of Parkinsonism in 
young adults. It is possible that some of the 
more recent cases of suspected young-onset 
Parkinson's disease might be related to 
MDMA exposure but that this link has not 
been recognized. 

These findings suggest that humans who 
use repeated doses of MDMA over several 
hours are at high risk for incurring severe 
brain dopaminergic neural injury (along with 
significant serotonergic neurotoxicity). This 
injury, together with the decline in dopami- 
nergic function known to occur with age (15), 
may put these individuals at increased risk for 
developing Parkinsonism and other neuro- 
psychiatric diseases involving brain dopa- 
mine/serotonin deficiency, either as young 
adults or later in life. 
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Conversion of Unc104/KIF1A 

Kinesin into a Processive Motor 

After Dimerization 

Michio Tomishige, Dieter R. Klopfenstein, Ronald D. Vale* 

Unc104/KIF1A belongs to a class of monomeric kinesin motors that have been 
thought to possess an unusual motility mechanism. Unlike the unidirectional 
motion driven by the coordinated actions of the two heads in conventional 
kinesins, single-headed KIF1A was reported to undergo biased diffusional mo- 
tion along microtubules. Here, we show that Unc104/KIF1A can dimerize and 
move unidirectionally and processively with rapid velocities characteristic of 
transport in living cells. These results suggest that Unc104/KIF1A operates in 
vivo by a mechanism similar to conventional kinesin and that regulation of 
motor dimerization may be used to control transport by this class of kinesins. 
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Caenorhabditis elegans Uncl04 and the 
mouse ortholog KIF1A are kinesin motors 
that transport synaptic vesicle precursors 
along microtubules from the neuronal cell 
body to the nerve terminal (1-3). For such 
long-range transport to be efficient, or- 
ganelles that encounter a microtubule must 
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move processively. Conventional kinesin, 
which belongs to a different subfamily of 
vesicle-transporting kinesins, is dimeric and 
uses its two motor domains in a coordinated 
manner to take successive, unidirectional 
8-nm steps along the microtubule without 
dissociating (4). However, KIF1A (2) and 
Uncl04 (5) are monomeric in solution and 
are thought to operate using a different mo- 
tility mechanism, because a single KIF1A 
motor domain has been shown to undergo 
biased diffusional movement along the mi- 
crotubule (6). A novel processivity mecha- 
nism was proposed that involves an electro- 
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static interaction between a highly basic loop 
(the K loop) on the motor domain and the 
disordered, negatively charged COOH-termi- 
nus of tubulin (7, 8); a nucleotide-induced 

A 

Putative coiled-coils 

U653-GFP (< 20 nM) 

QIO U371-GFP 
Leu-zipper 

U389-LZ-GFP 

Kines n-stalk 

U356-Kstalk-GFP 

U403-Kstalk2-GFP 

K560-GFP 

B 

rotation of the motor domain is believed to 
create directional bias (9). However, the ob- 
served net motion (0.14 jLm/s) (6) is -eight 
times slower than that observed for full- 

Single Molecule Multiple Molecule 

Velocity Run Length Velocity 
(pm/s) (pm) (pm/s) 

No movement 

No movement 

1.64 + 0.29 1.51 ? 0.16 

2.24 ? 0.36 >9.5 ? 2.2 

1.84 ? 0.50 2.81 ? 0.38 

0.53 + 0.18 1.11 ? 0.15 

1.90 ? 0.16 

0.72 ? 0.07 

2.13 0.14 

1.49 ? 0.22 

2.72 ? 0.17 

0.26 ? 0.02 

U389-LZ-GFP U356-Kstalk-GFP 

c 

E 
a) 0 

Q. 

Co 
05 

5pm 

5s 

C 

200 

E 100, 

co 
aC 
E 
a) 
U 100 
C 
._ 

1:: n 

Time 

U389-LZ-GFP 

6 

4 

CD 

4z 1- 
2 

0 

2 3 4 5 

Time (s) 

1.5- 

E 
3 1.0- 

._ 

O 0.5- 

> 
0.0 

0 

o00 

0 

o 

0 
0 

0 o 
00 

, ??oo . 
2 4 6 8 

Force (pN) 

E 

C 
CD 
E 
0 

0 
c 

0 0.1 0.2 

Time (s) 

4 
3' 

0 

CD 

3' 
z 
v 

0.3 

Fig. 1. Single-molecule motility of artificially dimerized UnclO4-GFP. (A) Single-molecule velocities 
and run lengths were measured with TIRF microscopy (at <20 nM motor concentrations), and 
multiple-molecule velocities were determined with a microtubule gliding assay (21). The velocity 
of U403-Kstalk2-GFP was determined during the portions of traces without pauses. See (14) for 
further details. (B) Kymographs showing frequency, velocity, and processivity of dimerized Uncl04 
constructs and a conventional kinesin construct (K560-GFP) along axonemes. Unidirectional 
movement appears in this plot as a diagonal line. Arrows show transient pauses during movement 
of U403-Kstalk2-GFP. (C) The movement of a bead coated with U389-LZ-GFP at predicted single 
motor density and U371-GFP at 100-fold higher motor density at 1 mM ATP in an optical trap (14) 
(left), the force-velocity curve of U389-LZ-GFP (upper right), and a raw trace of a U389-LZ-GFP- 
coated bead at 10 ILM ATP showing successive -8-nm steps (lower right). 

length Uncl04/KIF lA-induced movement in 
vivo (3) and in vitro (2). In addition, biased 
diffusion was not observed for the C. elegans 
Unc104 motor domain (5) and may be an 
artifact of particular motor constructs and 
buffer condition (10). Hence, the normal 
mode of motility for this kinesin class [often 
referred to as the "monomeric" kinesins (11)] 
has not been clear (12). 

Sequence analysis ofUncl04/KIFlA (and 
other members of this kinesin class) revealed 
potential coiled-coil regions adjacent to the 
motor domain, the first of which aligns with 
the neck coiled-coil of conventional kinesin 
(11), a region believed to play a role in 
head-head coordination (4). However, the 
probability of coiled-coil formation is low 
and may require high motor concentrations 
for dimerization. We recently found that con- 
centration of Unc 104 into lipid rafts facilitat- 
ed liposome transport along microtubules and 
that a mutation predicted to destabilize the 
neck coiled-coil inhibited liposome move- 
ment (13). Collectively, these findings raised 
the possibility that Uncl04/KIFlA might 
dimerize and operate by a two-headed mech- 
anism, and we sought to test this idea using 
single-molecule analyses. 

Our hypothesis predicted that constitu- 
tively dimerized Uncl04/KIF1A motors 
would show processive unidirectional motion 
along the microtubule and not biased diffu- 
sion. We created two constitutive Uncl04 
dimers [green fluorescent protein (GFP)- 
tagged] either by fusing the GCN4 leucine 
zipper (LZ) after the proposed UnclO4 neck 
coiled-coil (U389-LZ-GFP) or by joining the 
kinesin neck coiled-coil and stalk to Uncl04 
motor domain (U356-Kstalk-GFP) (Fig. 1A) 
(14). In contrast to two monomeric Uncl04 
constructs (U653-GFP and U371-GFP), the 
two constitutive Uncl04 dimers showed ro- 
bust processive movement that was smooth 
and unidirectional in a single-molecule, total 
internal reflection fluorescence (TIRF) mo- 
tility assay (Fig. 1B and movie S1). The run 
lengths were several microns long, which is 
comparable to or greater than those reported 
for conventional kinesin (Fig. 1A), and the 
velocities were similar to those measured for 
Uncl04 in the gliding assay (Fig. 1A) (5) and 
in vivo (3). It was previously suggested that 
the fast velocities produced by Unc104/ 
KIF1A (three- to fourfold greater than those 
produced by conventional kinesin) required 
many motors interacting simultaneously with 
a microtubule (5, 15). However, our results 
indicate that these fast velocities are intrinsic 
to the motor domains of a single dimerized 
Uncl04 molecule (16). 

Because the GCN4 region of U389-LZ- 
GFP could induce coiled-coil formation in 
the adjacent Uncl04 sequence, another 
dimeric Uncl04 was created that separated 
the putative Uncl04 neck coiled-coil and the 
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kinesin stalk with a -35-amino acid unstruc- 
tured region. This U403-Kstalk2-GFP protein 
showed unidirectional movement with a sim- 
ilar velocity to U389-LZ-GFP (Fig. 1A), sug- 
gesting that the Uncl04 neck can form a 
coiled-coil. However, unlike U389-LZ-GFP, 
U403-Kstalk2-GFP often paused during the 
movement (Fig. 1B, arrows), possibly due to 
a temporary unwinding of the native Uncl04 
neck coiled-coil. 

Using an optical trap, we also measured 
the mechanical properties of single U389-LZ- 
GFP molecules attached to 1-pJm beads. 
U389-LZ-GFP displayed a linear force- 
velocity curve, stalled when opposed by a 
force of -6 pN, and displayed 8-nm steps 
(Fig. 1C). These mechanical properties are 
similar to those of conventional kinesin (17), 
implying a similar motility mechanism. In 
contrast, U371-GFP, which had most of the 
coiled-coil region removed, did not show 
movement at single-molecule densities. At 
10- to 100-fold higher motor densities, U371- 
GFP-coated beads moved, but the stall forces 
(<3 pN) and velocities (<0.6 pLm/s) were 
both low (Fig. 1C). These results reveal that 
many truncated monomers can work cooper- 
atively to move a cargo, but the stall forces 
and velocities are lower than those produced 
by a single dimer. 

To test whether coiled-coil formation in 
the Uncl04 neck region is required for pro- 
cessivity, we used a mutant in which two 
hydrophobic residues in the first predicted 
heptad repeat were changed to charged resi- 
dues [Ile362 to Glu362 and Leu365 to Lys365 
(I362E/L365K) (Fig. 2A)] (13, 18). This neck 
destabilization mutation in U653-GFP and 
U403-Kstalk2-GFP decreased the velocity of 
microtubule gliding to closer to that of U37 1- 
GFP (Fig. 2B), suggesting conversion to a 
monomer mechanism. Consistent with this 
idea, this mutation abolished the unidirec- 
tional movement of single U403-Kstalk2- 
GFP molecules, which instead showed 
diffusional movement with a small plus-end- 
directed bias (Fig. 2C). This mutation had no 
effect on the gliding velocity of U371-GFP 
(Fig. 2B), indicating that the catalytic core 
was not affected. These observations reveal 
that coiled-coil formation in the neck region 
is required for head-head coordination in an 
Uncl04 dimer, as is true for conventional 
kinesin. 

Previous studies with a native construct 
(U653-GFP) reported no processive move- 
ment (5); however, these single-molecule as- 
says require low concentrations (<20 nM) of 
fluorescently labeled motor to reduce back- 
ground fluorescence, which may be incom- 
patible with motor dimerization because of 
the low coiled-coil probability (19). Support- 
ing the idea that U653 might form dimers at 
higher concentrations (3 IxM), we observed 
dimeric U653 species by SDS-polyacrylam- 
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ide gel electrophoresis (SDS-PAGE) after ad- 
dition of a zero-length chemical crosslinker 
(Fig. 3A). To test whether U653 might dimer- 
ize into a processive motor, we increased the 
motor concentration in the single-molecule 
fluorescence assay without increasing the 
background fluorescence by adding an excess 
of non-GFP-labeled U653 (0.1 to 7 JLM) to a 
fixed concentration of GFP-tagged motor (7 
nM). With >1 IJM "dark" motor, single 
U653-GFP molecules now showed fast uni- 
directional movement (Fig. 3, B and C, and 
movie S2) with movement properties (table 
S1) nearly identical to those of the artificially 
dimerized Uncl04 motors (Fig. 1A). In con- 
trast, the movement frequency of convention- 
al kinesin (K560-GFP) did not increase upon 
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conventional kinesin, except that the long run 
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tated by concentrating motors into lipid raft 
domains (13) or by enhancing neck coiled-coil 
stability, possibly by factors binding to the FHA 
domain located adjacent to the Uncl04/KIFlA 
neck coiled-coil (fig. S3). 
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Role of Hecl in Spindle 
Checkpoint Signaling and 

Kinetochore Recruitment of 

Mad1/Mad2 
Silvia Martin-Lluesma, Volker M. Stucke, Erich A. Nigg* 

The spindle checkpoint delays sister chromatid separation until all chromo- 
somes have undergone bipolar spindle attachment. Checkpoint failure may 
result in chromosome mis-segregation and may contribute to tumorigenesis. 
We showed that the human protein Hecl was required for the recruitment of 
Mpsl kinase and Madl/Mad2 complexes to kinetochores. Depletion of Hecl 
impaired chromosome congression and caused persistent activation of the 
spindle checkpoint, indicating that high steady-state levels of Madl/Mad2 
complexes at kinetochores were not essential for checkpoint signaling. Simul- 
taneous depletion of Hecl and Mad2 caused catastrophic mitotic exit, making 
Hecl an attractive target for the selective elimination of spindle checkpoint- 
deficient cells. 
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The genomic stability of all organisms 
depends on the correct segregation of chro- 
mosomes during cell division (1, 2). The 
accuracy of this process is monitored by the 
spindle assembly checkpoint (3, 4). This sur- 
veillance mechanism is able to detect a single 
unaligned chromosome, causing a promet- 
aphase arrest until proper bipolar attachment 
is achieved (5). First identified in yeast, sev- 
eral core checkpoint components have also 
been characterized in multicellular organisms 
(6-9). In humans, these include the protein 
kinases Bubl, BubRl, Mpsl, the Bubl/Rl- 
partner Bub3 (10, 11), and the Madl/Mad2 

complex (12, 13). All these proteins localize 
to kinetochores, particularly during early 
stages of mitosis (3). The prevailing model of 
spindle checkpoint function holds that the 
absence of an appropriate kinetochore-mi- 
crotubule (MT) interaction generates a signal 
that inhibits the activity of a ubiquitin ligase 
termed anaphase-promoting complex/cyclo- 
some (APC/C). In turn, APC/C activates the 
proteolytic degradation of securin, an inhibi- 
tor of sister chromatid separation (2). Both 
Mad2 (14-16) and multiprotein complexes 
comprising Mad2, BubR1, and Bub3 (17, 18) 
have been implicated in the inhibition of 
APC/C. Upon proper attachment of the last 
kinetochore, the APC/C-inhibitory signal is 
extinguished, and anaphase ensues. 

At the heart of this model, two key ques- 
tions need to be answered. First, how is a cell 
cycle-inhibitory signal generated at unat- 
tached kinetochores, and second, how is this 
signal extinguished upon attachment of the 
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last kinetochore? Early models for the gener- 
ation of an inhibitory signal have emphasized 
the importance of a transient association of a 
Madl/Mad2 complex with unattached kinet- 
ochores. Conversely, the loss of Mad2 from 
kinetochores has been correlated with check- 
point silencing (4, 19). However, the kineto- 
chore association of checkpoint components 
may depend on whether tension and/or MT 
attachment is impaired at the kinetochore (3, 
20, 21). Furthermore, soluble APC/C-inhibi- 
tory complexes exist already in interphase 
cells before kinetochore assembly (17). 

In a yeast two-hybrid screen for human 
Madl-interacting proteins (22), we isolated a 
cDNA coding for full-length human Hecl 
(highly expressed in cancer) (23) (fig. S1A). 
This coiled-coil protein is a putative mamma- 
lian homolog of budding yeast Ndc80p (24). 
The exact functions of Hecl and Ndc80p are 
unknown, but both proteins localize to kinet- 
ochores (23, 25). Yeast Ndc80p forms a com- 
plex with kinetochore proteins Nuf2p, 
Spc24p, and Spc25p, and mutational inacti- 
vation of these components causes defects in 
chromosome segregation (25-27). Similarly, 
microinjection of antibodies to Hecl into 
mammalian cells disrupts mitotic progression 
(23). As shown by immunofluorescence mi- 
croscopy, Hecl was present on kinetochores 
throughout mitosis (fig. S1B) (23, 25), 
whereas Madl was released upon alignment 
of chromosomes at the metaphase plate (fig. 
S1B) (28). Mapping of the Hecl and Mad2 
binding sites on Madl revealed them to be 
distinct, indicating that Madl could bind both 
proteins simultaneously (fig. S1A). 

To directly explore the functional signifi- 
cance of the Hecl-Madl interaction in HeLa 
S3 cells, gene silencing by small interfering 
RNA (siRNA) was used (29). Immunofluo- 
rescence microscopy (Fig. 1A and fig. S2) 
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S1B) (28). Mapping of the Hecl and Mad2 
binding sites on Madl revealed them to be 
distinct, indicating that Madl could bind both 
proteins simultaneously (fig. S1A). 

To directly explore the functional signifi- 
cance of the Hecl-Madl interaction in HeLa 
S3 cells, gene silencing by small interfering 
RNA (siRNA) was used (29). Immunofluo- 
rescence microscopy (Fig. 1A and fig. S2) 
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