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A Single P450 Allele Associated 

with Insecticide Resistance in 

Drosophila 
P. J. Daborn,' J. L. Yen,l M. R. Bogwitz,2 G. Le Goff,1 E. Feil,1 

S. Jeffers,3 N. Tijet,4 T. Perry,2 D. Heckel,2 P. Batterham,2 
R. Feyereisen,s T. G. Wilson,3 R. H. ffrench-ConstantT* 

Insecticide resistance is one of the most widespread genetic changes caused by 
human activity, but we still understand little about the origins and spread of 
resistant alleles in global populations of insects. Here, via microarray analysis 
of all P450s in Drosophila melanogaster, we show that DDT-R, a gene conferring 
resistance to DDT, is associated with overtranscription of a single cytochrome 
P450 gene, Cyp6g1. Transgenic analysis of Cyp6g shows that overtranscription 
of this gene alone is both necessary and sufficient for resistance. Resistance and 
up-regulation in Drosophila populations are associated with a single Cyp6g1 
allele that has spread globally. This allele is characterized by the insertion of 
an Accord transposable element into the 5' end of the Cyp6g1 gene. 
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Insecticide resistance represents an impor- 
tant example of natural selection. Resis- 
tance can be mediated either by changes in 
the sensitivity of insecticide targets in the 
nervous system or by metabolism of insec- 
ticides before they reach these targets (1). 
Insecticide resistance associated with target 
site insensitivity is well documented within 
the para-encoded voltage-gated sodium 
channel, the Rdl-encoded ligand-gated 
chloride channel, and the Ace-encoded ace- 
tylcholinesterase (1). However, the up-reg- 
ulation of metabolic enzymes associated 
with resistance, such as the cytochrome 
P450s and glutathione S-transferases, re- 
mains less well understood (2-7). We are 
using Drosophila melanogaster as a model 
insect in which to dissect the genetic basis 
of metabolic insecticide resistance (8, 9), 
particularly at the DDT-R locus. This locus 
not only represents insect resistance to 
DDT (10), a compound largely withdrawn 
but still used in the control of disease vec- 
tors (11), but also confers cross-resistance 
to a wide range of other existing and novel 
insecticides (12-15). DDT-R is a dominant 
gene that maps to the right arm of chromo- 
some II at 64.5 cM (16, 17). Recently, we 
have shown that DDT-R is associated with 
overtranscription of the P450 gene Cyp6gl 
in three D. melanogaster strains (18). In 
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this study, we were interested in answering 
three questions. First, is Cyp6gl overtran- 
scribed in all P450-mediated DDT-resistant 
D. melanogaster strains? Second, if so, is 
resistance globally associated with a single 
resistance allele? Third, is overtranscrip- 
tion of Cyp6gl alone both necessary and 
sufficient for resistance? 

The genes for the cytochrome P450s are 
a large family involved in a wide variety of 
metabolic functions. In insects, these en- 
zymes play roles in key processes ranging 
from host plant utilization to xenobiotic 
resistance (3). Within the complete genome 
sequence of D. melanogaster, some 90 in- 
dividual P450 genes have been identified 
(19). To determine the breadth of the cor- 
relation between Cyp6gl overtranscription 
and DDT resistance in D. melanogaster, we 
challenged a microarray carrying polymer- 
ase chain reaction (PCR) products from all 
identified P450 open reading frames in the 
genome. Array analysis of Hikone-R (20), a 
resistant strain established from field col- 
lections in the early 1960s (16, 21), shows 
that only Cyp6gl is overtranscribed relative 
to Canton-S, a susceptible reference strain 
(Fig. 1A). Similar array analysis of a sec- 
ond DDT-resistant strain, WC2, which was 
recently collected in the field (U.S.A.), re- 
vealed the same result, with only Cyp6gl 
being overtranscribed relative to P450 gene 
expression in the susceptible standard (Fig. 
1B). To measure the level of overtranscrip- 
tion associated with resistance, we per- 
formed quantitative reverse transcriptase 
(RT)-PCR on mRNA from a range of re- 
sistant and susceptible strains (22), relative 
to the standard RP49 (23). This analysis 
confirms the relative overtranscription of 
Cyp6gl in a range of strains and shows 10 
to 100 times as much mRNA in resistant 
strains as in a range of susceptible strains 
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(Fig. 1C). To examine a range of insecti- 
cides to which DDT-R confers cross-resis- 
tance, we mapped resistance to a chlorinat- 
ed hydrocarbon (DDT), two neonicotinoid 
nicotinic acetylcholine receptor agonists 
(imidacloprid and nitenpyram), and a novel 
insect growth regulator (lufenuron). We 
measured recombination rates against visi- 
ble genetic markers, P-element insertions 
of known location, and restriction fragment 
length polymorphisms (RFLPs). Resistance 
to all three different insecticides maps 
within the same genetic region encompass- 
ing the Cyp6gl locus (Fig. 2A), which 
suggests that a single P450 may be capable 
of metabolizing a wide range of insecticide 
structures. 

To examine the population genetics of 
DDT-R in global populations of D. mela- 
nogaster, we completely sequenced two 
different resistant alleles, Hikone-R and 
WC2. These alleles have an identical nu- 
cleotide sequence, and both carry an inser- 
tion in the 5' end of Cyp6gl that shows 
homology to the terminal direct repeat of 
an Accord transposable element (Fig. 2B). 
To further examine the similarity of DDT-R 
resistance alleles, we screened with DDT 
field-collected strains available from Dro- 
sophila stock centers. We did not find DDT 
resistance in strains established in the lab- 
oratory in the 1930s (Oregon-R-C, Swed- 
ish-C, and Canton-S) and collected before 
DDT usage, but did find resistance in 28 of 
75 strains established from different loca- 
tions across the globe in the 1960s and later 
(table Sl). Although this high frequency 
(37%) of resistant strains does not strictly 
represent the past or current frequency of 
resistance in global populations, as resis- 
tance alleles may have been lost by chance 
in subculturing, it does support two hypoth- 
eses. First, resistance to DDT was wide- 
spread, as expected, and second, resistance 
can persist in laboratory strains in the ab- 
sence of pesticide selection, which suggests 
that little or no fitness cost is associated 
with this mechanism. To examine the ap- 
parent correlation between the presence of 
the transposon and resistance, we surveyed 
resistant and susceptible strains for the 
presence or absence of the Accord element. 
We also sequenced the first intron of the 
Cyp6gl gene in the same resistant and sus- 
ceptible strains to determine the relatedness 
of the DDT-R alleles. A diagnostic, using 
PCR to detect the presence of the transpo- 
son and based on the length of the product 
generated, showed the insertion to be 
present in all 20 resistant alleles examined 
(Fig. 3A). The similarity of all the resistant 
alleles is also supported by a phylogeny of 
DNA sequences (fig. S1) derived from the 
first intron of the Cyp6gl gene. This shows 
that the susceptible alleles belong to several 

different clades of diverse geographic ori- 
gin. In contrast, the resistant alleles all 
belong to a single well-supported clade 
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(Fig. 3B), also containing a single suscep- 
tible genotype. This genotype, which does 
not carry the Accord transposable element, 
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Fig. 2. Resistance to DDT and several novel insecticides maps to the region encompassing the 
Cyp6gl locus. (A) Recombinational mapping against both visible mutants (cn, cinnabar eyes, and 
vg, vestigial wings), P-element insertions of known genomic location, and RFLPs show that 
resistance to DDT and the novel insecticides imidacloprid (IMI), nitenpyram (NIT), and lufenuron 
(LUF) maps to a region encompassing Cyp6gl. Map estimates for each compound are given (solid 
bars represent confidence intervals) alongside the predicted cytological regions encompassed (in 
parentheses). (B) Map of the genomic structure of the Cyp6g1 locus showing the intron-exon 
organization of the gene and the location of the Accord element insertion in the resistant 
(Hikone-R) allele (GenBank AY131284). Note the location of the PCR primers used in the diagnostic 
for the presence of the Accord element (22). 
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is therefore the putative susceptible progen- 
itor into which the transposable element 
inserted, thus forming the resistant allele. 
This allele has spread globally, under the 
combined influences of insecticide selec- 
tion and migration (24). The observation 
that the nucleotide sequence around the 
first intron in Cyp6gl (291 bp away from 
the site of the insertion) is identical in all 
the resistant alleles supports the concept of 
this global spread and suggests strong link- 
age disequilibrium or "hitchhiking" of nu- 
cleotide variation with the spread of DDT 
resistance. 

Finally, to verify that overtranscription 
of Cyp6gl alone is responsible for DDT 
resistance, we produced resistance in trans- 
genic flies carrying an inserted copy of 
Cyp6gl driven by the GAL4/UAS system 
(25). After germline transformation medi- 
ated by P-element transposition of con- 
structs containing UAS-Cyp6gl, we were 
able to overtranscribe the inserted copy of 
the gene using heat shock-based GAL4 
drivers. We again quantified the level of 
overtranscription from the Cyp6gl trans- 
gene via quantitative RT-PCR relative to 
RP49 transcription (Fig. 4A). These results 
show that transgenic overtranscription 
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leads to an overabundance of Cyp6gl tran- 
script of about 100 times that in susceptible 
nontransgenic fly strains. Heat-shocked 
flies were also resistant to a discriminating 
dose of 10 ,xg of DDT per vial, whereas 
controls lacking the GAL4 drivers, and thus 
lacking overtranscription of the inserted 
copy of the gene, were susceptible (Fig. 
4B). These transgenic experiments demon- 
strate that overtranscription of Cyp6gl 
alone is both necessary and sufficient for 
P450-mediated DDT resistance. 

Although several studies have implicat- 
ed the overexpression or alteration of indi- 
vidual P450s in insecticide resistance (3, 5, 
7), our results raise several important new 
conclusions for the molecular basis and 
origins of metabolic resistance. First, given 
the number of P450 genes present in D. 
melanogaster (19) and the potential com- 
plexity of their interactions (3), it was not 
expected that a single allele of a single gene 
could be associated with such widespread 
insecticide resistance. Second, it was also 
not expected that resistance alleles map- 
ping to the same region as DDT-R should 
show cross-resistance to such a wide range 
of compounds, including organochlorine, 
organophosphorus, carbamate, neonicotin- 
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Fig. 3. All resistant Cyp6gl alleles carry the Accord insertion and show identical nucleotide 
sequence within the first intron, supporting a single global origin of DDT-R. (A) Survey of a range 
of susceptible (S1_20) and resistant (R_120) fly strains (see table S1 for strain origins) with a 
PCR-based diagnostic to detect the presence or absence of the Accord element in the 5' end of the 
Cyp6gl gene. Note the perfect correlation between the presence of the element (larger, Accord 
associated 243-bp PCR product) and resistance. The relative positions of PCR primers used in the 
diagnostic are described in Fig. 2B. (B) Phylogeny of a global collection of susceptible (S_20o) and 
resistant (R,o20) DDT-R alleles. Note that the susceptible alleles form seven groups or "clades" and 
that the eighth clade contains all the resistant alleles and a single susceptible allele found in two 
different susceptible strains. 

oid, and insect growth regulator insecti- 
cides. Such broad cross-resistance would 
make a pest insect difficult to control with 
available insecticides and, although we 
have not formally demonstrated that this 
cross-resistance is strictly correlated with 
Cyp6gl overtranscription, this is now our 
working hypothesis. In this respect, we 
note that the insect CYP6 P450 family is 
phylogenetically related to the mammalian 
CYP3 family of which CYP3A4, expressed 
in the human liver, is also noted for its broad 
substrate specificity (26). Third, the possibil- 
ity that insecticide resistance might involve 
transposable elements has been raised previ- 
ously (27). However, a previous putative as- 
sociation of a transposable element with a 
P450 gene thought to be associated with re- 
sistance (28) was subsequently disproved 
(29). In the current study, although linkage 
between resistance and the Accord element is 
complete, the causal relation between the el- 
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Fig. 4. Heat shock-mediated overtranscription 
of Cyp6gl is both necessary and sufficient for 
DDT resistance. (A) An inserted transgenic copy 
of Cyp6gl, under the control of GAL4/UAS with 
a heat-shock driver, can be overtranscribed af- 
ter heat shock. Ten 20-min heat shock (37?C) 
treatments (with a 20-min 25?C recovery peri- 
od between heat shocks) of two different trans- 
genic fly lines (GAL4/UAS-Cyp6g1X and GAL4/ 
UAS-Cyp6g12, on the X and 2nd chromosome, 
respectively) up-regulated the Cyp6gl tran- 
script about 100 times in both strains. (B) Heat 
shock-induced overtranscription of Cyp6gl al- 
lows the transgenic strains to survive a discrim- 
inating dose of 10 ujg of DDT per vial. Adult 
flies were exposed to DDT applied to the inside 
of 20-ml glass scintillation vials as described 
previously (18). 
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ement and overtranscription remains to be 
proven. Fourth, and finally, earlier work on 
amplified esterase genes in mosquitoes sug- 
gested that a single global spread of one 
specific amplicon accounted for insecticide 
resistance in global populations of Culex 
pipiens mosquitoes (30). Further analysis of 
mosquito populations, however, showed that 
numerous different mutational events and 
their resulting amplicons make up the extant 
global population of resistance alleles in mos- 
quitoes (24, 31). Our description of an iden- 
tical resistant allele in 20 DDT-resistant 
strains of D. melanogaster of diverse geo- 
graphic origin represents the global spread of 
a single insecticide-resistance allele. 
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Little Evidence for 

Developmental Plasticity of 

Adult Hematopoietic Stem Cells 

Amy J. Wagers,* Richard 1. Sherwood, Julie L. Christensen, 
Irving L. Weissman 

To rigorously test the in vivo cell fate specificity of bone marrow (BM) hema- 
topoietic stem cells (HSCs), we generated chimeric animals by transplantation 
of a single green fluorescent protein (GFP)-marked HSC into lethally irradiated 
nontransgenic recipients. Single HSCs robustly reconstituted peripheral blood 
leukocytes in these animals, but did not contribute appreciably to nonhema- 
topoietic tissues, including brain, kidney, gut, liver, and muscle. Similarly, in 
GFP+:GFP- parabiotic mice, we found substantial chimerism of hematopoietic 
but not nonhematopoietic cells. These data indicate that "transdifferentiation" 
of circulating HSCs and/or their progeny is an extremely rare event, if it occurs 
at all. 
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As many recent reports have suggested that 
BM HSCs may harbor unexpected develop- 
mental plasticity (1-14), we set out to test 
rigorously the cell fate potential of prospec- 
tively isolated, long-term reconstituting 
HSCs (15-17) using chimeric animals gen- 
erated by transplantation of a single GFP+ 
c-kit+Thyl.ll?Lin-Sca-l+ (KTLS) BM 
HSC (fig. S1) (18). GFP+ HSCs were iso- 
lated by fluorescence-activated cell sorting 
(FACS) from BM of transgenic animals 
that constitutively express GFP, driven by 
the p-actin promoter, in all tissues (19). 
About 18% of recipients of single GFP+ 
KTLS HSCs showed significant levels of 
long-term, multilineage (both lymphoid 
and myeloid) hematopoietic engraftment in 
the peripheral blood (Table 1). Although 
the hematopoietic contribution from single 
GFP+ HSCs varied, in some recipients do- 
nor-derived contributions reached levels as 
high as -70% (Table 1). 

To further evaluate the cell fate poten- 
tial of transplanted HSCs, we analyzed tis- 
sues from engrafted recipients 4 to 9 
months after transplant for the presence of 
GFP+ cells by standard and confocal fluo- 
rescence microscopy (18). Tissues from re- 
cipient animals exhibiting multilineage re- 
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constitution of GFP+ blood leukocytes 
were stained with tissue-specific antibodies 
and/or with the pan-hematopoietic marker, 
CD45 (20-22). These sections were then 
analyzed to identify potentially transdiffer- 
entiated GFP+ cells, which satisfied one or 
more of the following criteria: (i) the GFP+ 
cell stains with tissue-specific markers; (ii) 
the GFP+ cell does not stain with a mono- 
clonal antibody to CD45; and (iii) the cell 
exhibits distinctive morphology, indicative 

Table 1. Frequency and degree of reconstitution 
in single HSC-transplanted mice. The peripheral 
blood (PB) of single HSC-reconstituted mice 
was analyzed by flow cytometry 5 and 14 weeks 
after transplant for the presence of GFP+ donor- 
derived leukocytes. PB cells were stained for 
markers of the lymphoid (L) lineage 
(CD3+,B220+) versus myeloid (M) lineage (Mac- 
1+, Gr-1+) or separately for B cells (B, B220+), 
T cells (T, CD3+), and myeloid cells (M, Mac-1+, 
Gr-l +). 

Frequency of reconstitution 
(reconstituted mice/total) 

5 weeks 14 weeks 

7/22 (32%) L + M 4/22 (18%) BTM 
5/22 (23%) L only 1/22 (5%) BT 

2/22 (9%) B only 

Average reconstitution 
(% GFP+ PB leukocytes) 

17.6% 20.2% 
(range: 0.12-77.6%) (range: 0.03-71.6%) 
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