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Buffered Tree Population Changes 
in a Quaternary Refugium: 
Evolutionary Implications 

P. C. Tzedakis,'* I. T. Lawson,2 M. R. Frogley,3 G. M. Hewitt,4 
R. C. Preece5 

A high-resolution pollen record from western Greece shows that the amplitude of 
millennial-scale oscillations in tree abundance during the last glacial period was 
subdued, with temperate tree populations surviving throughout the interval. This 
provides evidence for the existence of an area of relative ecological stability, 
reflecting the influence of continued moisture availability and varied topography. 
Long-term buffering of populations from climatic extremes, together with genetic 
isolation at such refugial sites, may have allowed lineage divergence to proceed 
through the Quaternary. Such ecologically stable areas may be critical not only for 
the long-term survival of species, but also for the emergence of new ones. 
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The Pleistocene refugium hypothesis (1) pro- 
posed that population fragmentation during 
individual glacial stages of the Quaternary 
promoted speciation. A more recent view is 
that the accentuated environmental instability 
did not lead to increased speciation rates, 
with most species predating the Pleistocene 
(2, 3). This evolutionary stability has been 
attributed to orbital (2) and millennial (4) 
climate fluctuations, which undo microevolu- 
tionary changes by forcing repeated popula- 
tion crashes, range shifts, and gene flow. 
Central to this view is that the alternation of 
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climate phases does not generally allow suf- 
ficient time for genetic differentiation to spe- 
cies rank. However, molecular genetic data 
reveal considerable divergence between pop- 
ulations of many species in southern refugial 
centers in Iberia, Italy, the Balkans, and 
Greece, which took several glacial-intergla- 
cial cycles to accumulate (5-7). Analysis of 
DNA divergence in animals (6, 8) shows that 
species have continued forming through the 
Pleistocene and that such divergence has pro- 
ceeded apparently unhindered in some places 
(7, 9). DNA divergence indicates that, where- 
as in lowland tropical forests most species 
formed before the Quaternary, clusters of 
recently diverged lineages along with older 
species are found in tropical mountain re- 
gions (10, 11). It has thus been postulated 
(10) that these mountains are centers for spe- 
ciation because they provide a relatively sta- 
ble habitat through climate oscillations in 
which older species survive and new lineages 
are generated. Although little paleoecological 
evidence has been available, this long-term 
stability is thought to be a function of con- 
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tinued moisture availability and varied topog- 
raphy (7, 10). A revised view of Quaterary 
evolutionary trends is that, while climate 
variability mostly inhibited speciation, 
species continued to form in places where 
presumed ecological stability allowed accu- 
mulation of genetic divergence over several 
glacial-interglacial cycles. 

Here we present a new pollen record from a 
refugial site in Greece and test the extent to 
which certain habitats in mid-latitude areas re- 
mained immune from the extreme effects of 
Quaternary climate variability. The Ioannina 
basin (Fig. 1) is an intramontane plateau, 470 m 
above sea level (a.s.l.), situated in a topograph- 
ically diverse landscape on the western flank of 
the Pindus mountain range, where the presence 
of refugial tree populations has been previously 
documented (12). The basin has a sub-Mediter- 
ranean climate with high annual precipitation 
[mean January temperature (Tj,) 4.9?C; mean 
July temperature (Tjul) 24.9?C; annual precipi- 
tation (Pan,) 1200 mm]. Core 1-284 (39?45'N, 
20?51'E; 319 m length) was drilled in 1989 
near the previously studied 1-249 site (12). An 
initial age model for 1-284 (13) has here been 
modified by using calibrated radiocarbon ages 
for the last 21,000 14C years and an astronom- 
ical calibration of certain vegetation patterns for 
the rest of the sequence (14). Results of pollen 
analysis (14) from the upper 102 m of the 1-284 
core, spanning the past 130,000 years, are pre- 
sented in Figs. 2 and 3B; mean sampling inter- 
val is -225 years, 10 times as fine as the 
interval in 1-249, and higher than other compa- 
rable European pollen sequences. 

Three broad vegetation types are represented 
by the palynological assemblages of 1-284: (i) 
forest communities [arboreal pollen (AP) > 
70%] during the Last Interglacial [111.8 to 
127.3 thousand calendar years ago (ka)], Inter- 
stadial 1 (88 to 104.5 ka), Interstadial 2 (68 to 83 
ka) and the early Holocene (5 to 11.5 ka); (ii) 
communities of intermediate forest cover 
(70% > AP > 40%) during the Middle Pleni- 
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glacial (26 to 59 ka) and Stadials 1 (104.5 to 
111.8 ka) and 2 (83 to 88 ka) of the last inter- 
glacial complex; and (iii) open vegetation com- 
munities with woodland of scattered trees (40% 
> AP > 21%) during the Early (59 to 68 ka) 
and Late (11.5 to 26 ka) Pleniglacial (and also 
over short intervals of the Middle Pleniglacial 
and during the late Holocene). During the gla- 
cial intervals, in addition to the well-represented 

Fig. 1. Topographic map showing the 
loannina basin and surrounding area. 
All heights are in meters above sea 
level. The sites of cores 1-249 and 
1-284 are marked with circles. Inset: 
location of sites discussed in text. I, 
loannina; K, Kopais; T, Tenaghi Philip- 
pon; 0, Mount Olympus; E, Island of 
Ewoia. 

deciduous Quercus and Pinus, the record shows 
continuous or near-continuous presence of pol- 
len of Abies, Ulmus, Corylus, Carpinus, and 
Ostrya; the more thermophilous taxa show in- 
termittent presence. These data clearly show that 
temperate tree populations persisted within the 
region throughout the last glacial period. 

The summary pollen curves (Fig. 3B) show 
that the 1-284 record captures the large-scale 

orbital variability over the last 130,000 years, 
but is characterized by less extensive AP de- 
creases relative to other long pollen sequences 
from southern Europe (15-18) during stadial 
and glacial intervals. Recent paleoclimate re- 
sults using a nested model (19, 20) furnish 
some idea of the conditions that contributed to 
the survival of tree populations at Ioannina. 
During the last glacial maximum (LGM) at 21 
ka, model simulations for the Ioannina region 
show decreases from moder values of 10?C, 
6.8?C and 545 mm for Tja, TjU, and Pan, 
respectively. In addition, annual growing de- 
gree days above 5?C were 920 at the LGM, 
compared with 2330 at present. Despite the 
magnitude of the decrease in precipitation, pa 
remained above 600 mm during the LGM, with 
an equable distribution throughout the year. 
Therefore, the decrease in LGM arboreal values 
represents the combined effects of reduced an- 
nual precipitation and winter temperatures, a 
shorter growing season and also lower atmo- 
spheric CO2 concentrations, which led to tree 
population contraction, but were not severe 
enough to cause their elimination. 

The detailed nature of the 1-284 record also 
allows the identification of millennial-scale ex- 
pansions and contractions of tree populations, 
similar in frequency to the climate variability 
seen in North Atlantic (21) and Greenland 
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records (22) (Fig. 3, C and D). The precise 
phase relationship between North Atlantic cli- 
mate oscillations and vegetation response in 
southern Europe has recently been clarified by 
pollen sequences in marine cores from the Por- 
tuguese margin (23) and the Alboran Sea, west- 
ern Mediterranean (24), which show that fluc- 
tuations in Iberian tree populations closely 
tracked North Atlantic millennial-scale vari- 
ability. Rapid transmission of this variability 
[reduced moisture content of eastward-moving 
low-pressure systems and increased advection 
of polar air (24)] would have led to abrupt 
changes in terrestrial ecosystems across S. Eu- 
rope, with the largest tree population crashes 
associated with Heinrich events, and intermedi- 
ate contractions corresponding to Dansgaard- 
Oeschger stadials, as documented for southeast 
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Spain (24) and Italy (17). Hence, the largest 
reductions in AP values at Ioannina should 
correlate with the AP absolute minima in the 
Alboran marine pollen record (24), which are, 
in turn, synchronous with Heinrich events. 

Although Fig. 3 shows evidence of millen- 
nial-scale variability, a consistent feature of 
1-284 is that the minimum AP values are always 
above 21%, with continuous curves for several 
temperate tree pollen types and, moreover, the 
amplitude of oscillations is relatively subdued. 
One explanation may be that this is a result of a 
gradual eastward attenuation of the North At- 
lantic climate signal. However, pollen records 
from Kopais in central Greece (18) and the 
island of Lesvos in the eastern Aegean (25) 
show much larger amplitude changes in AP 
values during the last glacial period, indicating 

no such attenuation. A more likely explanation 
for the subdued tree population contractions at 
Ioannina revolves around the importance of 
local intrinsic properties. As suggested by the 
paleoclimate simulations (19), factors leading 
to high precipitation in western Greece today 
(essentially, orographic uplift of air charged 
with moisture from the nearby Ionian Sea) also 
operated during the last glacial, moderating the 
impact of regional aridity on tree populations at 
Ioannina. In addition, high topographic vari- 
ability provided a range of sheltered habitats, 
such that populations could migrate and survive 
within the Ioannina region. In contrast, at Ko- 
pais (38?26'N, 23?03'E; 95 m a.s.l.), located on 
the Boeotian plain in the rain-shadow of the 
Pindus with annual precipitation levels today at 
470 mm, arid events had a more extensive 
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Fig. 3. (A) 1-284 sediment accumulation rates. (B) Summary pollen 
percentage curves from the 1-284 sequence; they represent changes in 
vegetation structure (relative degree of forest versus open vegetation 
communities). Dashed line, total AP; solid line, AP - (Juniperus + Pinus), 
representing the relative abundance of temperate tree populations (Ju- 
niperus and Pinus are not included as their ecological requirements are 
not always indicative of temperate conditions). The age model is based 
on control points shown in Fig. 2. (C) Variations in 6180 composition of 

planktonic foraminifera in marine core MD95-2042 in the Portuguese 
margin (21). (D) Variations in 6180 composition of ice in the GISP2 
record, Greenland (22). H1 to H5 represent positions of Heinrich events. 
Marine isotope stages (MIS) are indicated. The GISP2 ice core chronology 
is based on counting annual layers, the MD95-2042 chronology on 
alignment to the GISP2 record and radiometric ages of sea-level still- 
stands, and the 1-284 age model on radiocarbon ages and astronomical 
calibration (14). 
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impact on vegetation communities, crossing 
ecological thresholds. Although the magnitude 
of the paleoclimatically simulated LGM differ- 
ences from modem-day values is smaller at 

Kopais (8?C and 3?C for Tja and Tjul, respec- 
tively, and 295 mm for Pan) than at Ioannina, 
absolute paleoprecipitation values are in this 
case critical. At Ioannina LGM Pa is estimat- 
ed at 655 mm; at Kopais the equivalent figure is 
180 mm, below the -300-mm threshold, which 
could have supported significant tree popula- 
tions [e.g. (26)]. Similarly, at Tenaghi Phillipon 
(41?10'N, 24?20'E; 40 m a.s.l.) on the plain of 
Drama, northeastern Greece, where conditions 
are more continental, even the wetter phases 
could barely support temperate trees (15). 

Hence, although all three sites experienced 
climatic oscillations throughout the last glacial, 
their ecological impact was largely determined 

by the extent to which (i) local moisture avail- 

ability minima remained above the threshold 
for survival of temperate trees and (ii) topo- 
graphic variability provided shelter from incur- 
sions of polar air. This resulted in strikingly 
different pollen records (fig. Si), which show a 
distinct biogeographic pattern east and west of 
the Pindus, with eastern arid and exposed low- 
lands having minimal presence of temperate 
tree populations during glacials and stadials, in 
contrast to the main refugial mid-altitude sites 
of western Greece, which provided the source 
for recolonization during each interstadial. Al- 

though there is no direct paleobotanical evi- 
dence, thermophilous Mediterranean taxa may 
have persisted along coastal plains, whereas 
small populations of pines and oaks may also 
have survived in favorable locations east of the 
Pindus (e.g., areas of high precipitation and 
variable topography near Mount Olympus and 
the Island of Ewoia). 

The Ioannina data provide evidence for 
the existence of an ecologically near-stable 
area where local conditions appear to have 
buffered the extreme effects of Quaternary 
climate variability, contributing to the surviv- 
al of residual tree populations. This conclu- 
sion is independent of any imprecisions in the 
1-284 age model: whether a particular AP 
minimum is in or out of phase with a Hein- 
rich event does not alter the main feature of 
the pollen record, which is that curves of 

many tree taxa remain continuous through- 
out. When combined with the longer 1-249 
record (12), what emerges is that populations 
of many temperate tree species have persisted 
in this general area, over several hundred 
thousand years, albeit at varying abundances. 

Given the present distinctive genetic char- 
acter of Iberian, Italian, and Balkan popula- 
tions, it has been argued (6) that each peninsula 
remained genetically isolated not only during 
glacials, but also during interglacials, thus pre- 
serving the products of evolutionary processes. 
Whether some communication occurred in 
northern parts of refugial peninsulas (27) is 

debatable, but in any event, populations in the 
south would have remained isolated. At a finer 
scale, the Ionian Sea and Pindus mountain 

range would act as barriers, limiting gene flow 
that might have originated from range expan- 
sion from areas further afield, thus preserving 
any accumulated differences. Recent DNA data 
from grasshoppers on separate mountain 
blocks, "sky islands" in the Rocky Mountains, 
USA, provides evidence of Pleistocene diver- 
gence and speciation in similar conditions of 
isolation and allopatry (28). 

During glacials, reduced populations surviv- 

ing in isolated habitats could have differentiated 

through selection and genetic drift. Such mi- 

croallopatry would be repeated each cold peri- 
od, interspersed with range expansion beyond 
the Pindus, varying selection, and parapatry 
with some hybridization. Under such changing 
conditions, each taxon would follow its own 

pathway of divergence and speciation (6). 
Whether speciation events did take place in the 
immediate Ioannina area has yet to be estab- 
lished, but the record presented here affords us 
a glimpse of the conditions that potentially 
could lead to divergence and speciation, when 

populations remained effectively isolated over 
several glacial-interglacial cycles. 

The richness of the Mediterranean flora 
with its unusually high endemism is, in part, a 
reflection of its geographical position and geo- 
logical history, as well as the extent to which 

Tertiary species managed to survive the effects 
of Quaternary climate variability (29). Howev- 
er, local buffering from extreme environmental 
effects, as illustrated by the Ioannina record, not 

only led to reduced extinction rates but may 
have also provided an opportunity for new spe- 
cies to emerge. The western Balkans and spe- 
cifically the Pindus mountains consistently 
emerge as a hot spot of endemism not only in 

plants, but also in various animal groups (30). 
For example, the distribution of spiders shows 
that the highest number of endemic species in 
the Balkans is recorded in the Pindus region 
(150) and, moreover, half of these are wood- 
land species (31). Thus, the persistence of tree 

populations in the Pindus may also have pro- 
moted genetic divergence in other organisms by 
providing relatively stable habitats through 
Quaterary climate variations. 

Examination of the genetic structure of 

populations in the Pindus should provide a 
test of these ideas, by showing the degree of 
differentiation relative to nonrefugial areas in 
Greece and the Balkans. A combined paleo- 
ecological-genetic approach should be able to 

pinpoint those populations that are most im- 

portant for conservation, not only for the 

long-term survival of species, but also for the 

emergence of new ones. Because most north- 
ern European populations are eliminated dur- 

ing glacials, the identification of the locations 
of southern long-term refugia should be a 
conservation priority. 
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