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Hierarchical Organization of 

Modularity in Metabolic 

Networks 
E. Ravasz,' A. L. Somera,2 D. A. Mongru,2 Z. N. Oltvai,2* 

A.-L. Barabasi1* 

Spatially or chemically isolated functional modules composed of several cellular 
components and carrying discrete functions are considered fundamental build- 
ing blocks of cellular organization, but their presence in highly integrated 
biochemical networks lacks quantitative support. Here, we show that the 
metabolic networks of 43 distinct organisms are organized into many small, 
highly connected topologic modules that combine in a hierarchical manner into 
larger, less cohesive units, with their number and degree of clustering following 
a power law. Within Escherichia coli, the uncovered hierarchical modularity 
closely overlaps with known metabolic functions. The identified network ar- 
chitecture may be generic to system-level cellular organization. 
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The identification and characterization of 
system-level features of biological organiza- 
tion is a key issue of postgenomic biology 
(1-3). The concept of modularity assumes 
that cellular functionality can be seamlessly 
partitioned into a collection of modules. Each 
module is a discrete entity of several elemen- 
tary components and performs an identifiable 
task, separable from the functions of other 
modules (1, 4-8). Spatially and chemically 
isolated molecular machines or protein com- 
plexes (such as ribosomes and flagella) are 
prominent examples of such functional units, 
but more extended modules, such as those 
achieving their isolation through the initial 
binding of a signaling molecule (9), are also 
apparent. 

Simultaneously, it is recognized that the 
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thousands of components of a living cell are 
dynamically interconnected, so that the cell's 
functional properties are ultimately encoded 
into a complex intracellular web of molecular 
interactions (2-6, 8). This is perhaps most 
evident with cellular metabolism, a fully con- 
nected biochemical network in which hun- 
dreds of metabolic substrates are densely in- 
tegrated through biochemical reactions. 
Within this network, however, modular orga- 
nization (i.e., clear boundaries between sub- 
networks) is not immediately apparent. In- 
deed, recent studies have demonstrated that 
the probability that a substrate can react with 
k other substrates [the degree distribution 
P(k) of a metabolic network] decays as a 
power law P(k) - k-~ with y - 2.2 in all 
organisms (10, 11), suggesting that metabolic 
networks have a scale-free topology (12). A 
distinguishing feature of such scale-free net- 
works is the existence of a few highly con- 
nected nodes (e.g., pyruvate or coenzyme 
A), which participate in a very large num- 
ber of metabolic reactions. With a large 
number of links, these hubs integrate all 
substrates into a single, integrated web in 
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which the existence of fully separated mod- 
ules is prohibited by definition (Fig. 1A). 

Yet, the dilemma of a modular versus a 
highly integrated module-free metabolic net- 
work organization remains. A number of ap- 
proaches for analyzing the functional capa- 
bilities of metabolic networks indicate the 
existence of separable functional elements 
(13, 14). Also, from a purely topologic 
perspective, the metabolic network of Esch- 
erichia coli is known to possess a high clus- 
tering coefficient (11), a property that is sug- 
gestive of a modular organization. In itself, 
this implies that the metabolism ofE. coli has 
a modular topology, potentially comprising 
several densely interconnected functional 
modules of varying sizes that are connected 
by few intermodule links (Fig. lB). However, 
such clear-cut modularity imposes severe re- 
strictions on the degree distribution, implying 
that most nodes have approximately the same 
number of links, which contrasts with the 
metabolic network's scale-free nature (10, 
11). 

To determine whether such a dichotomy is 
indeed a generic property of all metabolic 
networks, we first calculated the average 
clustering coefficient for 43 different organ- 
isms (10, 15, 16) as a function of the number 
of distinct substrates N present in their me- 
tabolism. The clustering coefficient, defined 
as Ci = 2n/ki(k - 1), where n denotes the 
number of direct links connecting the ki near- 
est neighbors of node i (17), is equal to 1 for 
a node at the center of a fully interlinked 
cluster, and it is 0 for a metabolite that is part 
of a loosely connected group (Fig. 2A). 
Therefore, Ci averaged over all nodes i of a 
metabolic network is a measure of the net- 
work's potential modularity. We found that, 
for all 43 organisms, the average clustering 
coefficient is about an order of magnitude 
larger than that expected for a scale-free net- 
work of similar size (Fig. 2B), suggesting that 
metabolic networks in all organisms are char- 
acterized by a high intrinsic potential modu- 
larity. We also observed that, in contrast with 
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the prediction of the scale-free model, for 
which the clustering coefficient decreases as 
N-?075 (18), the clustering coefficient of met- 
abolic networks is independent of their size 
(Fig. 2B). 

These results demonstrate a fundamental 
conflict between the predictions of the cur- 
rent models of metabolic organization. The 
high, size-independent clustering coefficient 
offers strong evidence for modularity, where- 
as the power law degree distribution of all 
metabolic networks (10, 11) strongly sup- 
ports the scale-free model and rules out a 
manifestly modular topology. To resolve this 
apparent contradiction, we propose a simple 
heuristic model of metabolic organization, 
which we refer to as a "hierarchical" network 
(Fig. 1C) (19). In such a model network, our 
starting point is a small cluster of four dense- 
ly linked nodes. Next, we generate three rep- 
licas of this hypothetical module and connect 
the three external nodes of the replicated 

REPORTS 

clusters to the central node of the old cluster, 
obtaining a large 16-node module. Subse- 
quently, we again generate three replicas of 
this 16-node module and connect the periph- 
eral nodes to the central node of the old 
module (Fig. 1C). These replication and con- 
nection steps can be repeated indefinitely, in 
each step quadrupling the number of nodes in 
the system. The architecture of such a net- 
work integrates a scale-free topology with an 
inherent modular structure. It has a power law 
degree distribution with degree exponent y = 
1 + (In 4)/(ln 3) = 2.26, in agreement with 
-y = 2.2 observed in metabolic networks. Its 
clustering coefficient C - 0.6 is also compa- 
rable with that observed for metabolic net- 
works. Most important, the clustering coeffi- 
cient of the model is independent of the size 
of the network, in agreement with the results 
of Fig. 2B. 

A unique feature of the proposed net- 
work model, not shared by either the scale- 

Fig. 1. Complex network A 
models. (A) A schematic il- 
lustration (left) of a scale- 
free network, whose degree 
distribution follows a power 
law. In such a network, a few 
highly connected nodes, or 
hubs (blue circles), play an 
important role in keeping the a 
whole network together. A 
typical configuration (right) 
of a scale-free network with 
256 nodes is also shown, ob- 
tained using the scale-free 
model, which requires the B 
addition of a new node at 
each time such that existing 
nodes with higher degrees of t t 

connectivity have a higher A 
chance of being linked to the- 
new nodes (12). The nodes 
are arranged in space with a 
standard clustering algorithm 
(30) to illustrate the absence 
of an underlying modularity. 
(B) Schematic illustration 
(left) of a manifestly modular 
network made of four highly 
interlinked modules connect- 
ed to each other by a few C 
links. This intuitive topology 
does not have a scale-free 
degree distribution, as most 
of its nodes have a similar 
number of links, and hubs are 
absent. A standard clustering 
algorithm uncovers the net- 
work's inherent modularity 
(right) by partitioning a mod- 
ular network of N = 256 
nodes into the four isolated 
structures built into the sys- 
tem. (C) The hierarchical net- 
work (left) has a scale-free 
topology with embedded modularity. The hierarchical levels are represented in increasing order 
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering 
the network's underlying modularity. A detailed quantitative characterization of the three network 
models is available in (16). 

free (Fig. 1A) or modular (Fig. 1B) models, 
is its hierarchical architecture. This hierar- 
chy, which is evident from a visual inspec- 
tion, is intrinsic to the assembly by repeat- 
ed quadrupling of the system. The hierar- 
chy can be characterized quantitatively by 
using the recent observation (20) that, in 
deterministic scale-free networks, the clus- 
tering coefficient of a node with k links 
follows the scaling law C(k) - k-1. This 

scaling law quantifies the coexistence of a 
hierarchy of nodes with different degrees of 
modularity, as measured by the clustering 
coefficient, and is directly relevant to our 
model (Fig. 1C). Indeed, the nodes at the 
center of the numerous 4-node modules 
have a clustering coefficient C = 3/4, those 
at the center of a 16-node module have k = 
13 and C = 2/13, and those at the center of 
the 64-node modules have k = 40 and C = 
2/40, indicating that the higher a node's 
connectivity, the smaller its clustering co- 
efficient, asymptotically following the 1/k 
law. 

To investigate whether such hierarchical 
organization is present in cellular metabo- 
lism, we measured the C(k) function for the 
metabolic networks of all 43 organisms. As 
shown in Fig. 2, C through F, for each 
organism, C(k) is well approximated by 
C(k) ~ k-1, in contrast to the k-indepen- 
dent C(k) predicted by both the scale-free 
and modular networks. This provides direct 
evidence for an inherently hierarchical or- 
ganization. Such hierarchical modularity 
reconciles within a single framework all the 
observed properties of metabolic networks: 
their scale-free topology; high, system 
size-independent clustering coefficient; 
and the power law scaling of C(k). 

A key issue from a biological perspective 
is whether the identified hierarchical archi- 
tecture reflects the true functional organiza- 
tion of cellular metabolism. To uncover 
potential relations between topological mod- 
ularity and the functional classification of 
different metabolites, we concentrated on the 
metabolic network ofE. coli, whose metabol- 
ic reactions have been exhaustively studied, 
both biochemically and genetically (21). Us- 
ing a previously established graph-theoretical 
representation (10), we first subjected E. co- 
li's metabolic organization to a three-step 
reduction process, replacing nonbranching 
pathways with equivalent links, allowing us 
to decrease its complexity without altering 
the network topology (16). Next, we calcu- 
lated the topological overlap matrix O0(i, j) 
of the condensed metabolic network (Fig. 
3A). A topological overlap of 1 between sub- 
strates i andj implies that they are connected 
to the same substrates, whereas a 0 value 
indicates that i and j do not share links to 
common substrates among the metabolites 
they react with. The metabolites that are part 
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of highly integrated modules have a high 
topological overlap with their neighbors, and 
we found that the larger the overlap between 
two substrates within the E. coli metabolic 
network, the more likely it is that they belong 
to the same functional class. 

As the topological overlap matrix is ex- 
pected to encode the comprehensive en- 
zyme catalyzed functional relatedness of 
the substrates forming the metabolic net- 
work, we investigated whether potential 
functional modules encoded in the network 
topology can be uncovered automatically. 
Initial application of an average-linkage hi- 
erarchical clustering algorithm (22) to the 
overlap matrix of the small hypothetical 
network shown in Fig. 3A placed those 
nodes that have a high topological overlap 
close to each other (Fig. 3B). Also, the 
method identified the three distinct mod- 
ules built into the model of Fig. 3A, as 
illustrated by the fact that the EFG and 
HIJK modules are closer to each other in a 
topological sense, with the ABC module 
being farther from both (Fig. 3B). Applica- 
tion of the same technique on the E. coli 
overlap matrix Or(i, j) provides a global 
topologic representation of E. coli metabo- 
lism (Fig. 4A). Groups of metabolites form- 
ing tightly interconnected clusters are visual- 
ly apparent, and on closer inspection, the 
hierarchy of nested topologic modules of in- 
creasing sizes and decreasing interconnected- 
ness is also evident. To visualize the relation 
between topological modules and the known 
functional properties of the metabolites, we 
color-coded the branches of the derived hier- 
archical tree according to the predominant 
biochemical class of the substrates it produc- 
es, using the classification of metabolism 
based on standard, small molecule biochem- 
istry (15). As shown in Fig. 4A, and in the 
three-dimensional representation in Fig. 4B, 
most substrates of a given small molecule 
class are distributed on the same branch of 
the tree (Fig. 4A) and correspond to relatively 
well delimited regions of the metabolic net- 
work (Fig. 4B). Therefore, there are strong 
correlations between shared biochemical 
classification of metabolites and the global 
topological organization of E. coli metabo- 
lism (Fig. 4A, bottom) (16). 

To correlate the putative modules ob- 
tained from our graph theory-based analy- 
sis to actual biochemical pathways, we con- 
centrated on the pathways involving the 
pyrimidine metabolites. Our method divid- 
ed these pathways into four putative mod- 
ules (Fig. 4C), which represent a topologi- 
cally well-limited area of E. coli metabo- 
lism (Fig. 4B, blue-shaded region). As 
shown in Fig. 4D, all highly connected 
metabolites (Fig. 4D, red-outlined boxes) 
correspond to their respective biochemical 
reactions within pyrimidine metabolism, 

together with those substrates that were 
removed during the original network reduc- 
tion procedure, and then added again (Fig. 
4D, green-outlined boxes). However, it is 
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k-1, and in (C through E), the diamonds represent the C(k) value expected for a scale-free network 
(Fig. 1A) of similar size, indicating the absence of scaling. The wide fluctuations are due to the small 
size of the network. 
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J(2/3) K 

Fig. 3. Uncovering the underlying D 
modularity of a complex network. c 
(A) Topological overlap illustrated __ -0.90 
on a small hypothetical network. For B 00 1 
each pair of nodes, i andj, we define A 0.30o 
the topological overlap OT(, j) = 10 

Jn(i, j)/[min (ki, k)], where J(i, j) 
denotes the number of nodes to which both i andj are linked (plus 1 if there is a direct link between 
i and j) and [min (ki, k)] is the smaller of the ki and k. degrees. On each link, we indicate the 
topological overlap for the connected nodes, and in parentheses next to each node, we indicate the 
node's clustering coefficient. (B) The topological overlap matrix corresponding to the small network 
shown in (A). The rows and columns of the matrix were reordered by the application of an average 
linkage clustering method (22) to its elements, allowing us to identify and place close to each other 
those nodes that have high topological overlap. The color code denotes the degree of topological 
overlap between the nodes. The associated tree reflects the three distinct modules built into the 
model of Fig. 3A, as well as the fact that the EFG and HIJK modules are closer to each other in the 
topological sense than to the ABC module. 
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Fig. 4. Identifying the topological modules in E. 
coli metabolism. (A) The topologic overlap ma- 
trix corresponding to E. coli metabolism, to- 
gether with the corresponding hierarchical tree 
(top) that quantifies the relation between the 
different modules. The branches of the tree are 
color coded to reflect the predominant bio- 
chemical classification of their substrates. The 
biochemical classes that we used to group the 
metabolites represent carbohydrate metabo- 
lism (blue); nucleotide and nucleic acid metab- 
olism (red); protein, peptide, and amino acid 
metabolism (green); lipid metabolism (cyan); 
aromatic compound metabolism (dark pink); 
monocarbon compound metabolism (yellow); 
and coenzyme metabolism (light orange) (15). 
The color code of the matrix denotes the de- 
gree of topological overlap shown in the matrix. 
The large-scale functional map of the metabo- 
lism, as suggested by the hierarchical tree, is 
also shown (bottom). (B) Three-dimensional 
representation of the reduced E. coli metabolic 
network. Each node is color coded by the pre- 
dominant biochemical class to which it belongs 
and is identical to the color code applied to the 
branches of the tree shown in (A). The different 
functional classes are visibly segregated into 
topologically distinct regions of metabolism. 
The blue-shaded region denotes the nodes be- 
longing to pyrimidine metabolism. (C) Enlarged 
view of the substrate module of pyrimidine 
metabolism. The colored boxes denote the first 
two levels of the three levels of nested modu- 
larity suggested by the hierarchical tree. CDP, 
cytidine 5'-diphosphate; CMP, cytidine 5'- 
monophosphate; CTP, cytidine 5'-triphosphate; 
dCDP, deoxycytidine 5'-diphosphate; dCMP, 
deoxycytidine 5'-monophosphate; dCTP, de- 
oxycytidine 5'-triphosphate; dUDP, deoxyuri- 
dine 5'-diphosphate; dUMP, deoxyuridine 5'- 
monophosphate; dUTP, deoxyuridine 5'- 
triphosphate; UTP, uridine 5'-triphosphate. (D) 
A detailed diagram of the metabolic reactions 
that surround and incorporate the pyrimidine 
metabolic module. Red-outlined boxes denote 
the substrates directly appearing in the reduced 
metabolism and the tree shown in (C). Sub- 
strates in green-outlined boxes are internal to 
pyrimidine metabolism but represent members 
of nonbranching pathways or end pathways 
branching from a metabolite with multiple con- 
nections (16). Blue- and black-outlined boxes 
show the connections of pyrimidine metabo- 
lites to other parts of the metabolic network. 
Black-outlined boxes denote core substrates 
belonging to other branches of the metabolic 
tree (A), and blue-outlined boxes denote non- 
branching pathways (if present) leading to 
those substrates. With the exception of car- 
bamoyl phosphate and S-dihydroorotate, all 
pyrimidine metabolites are connected with a 
single biochemical reaction. The shaded box- 
es around the reactions highlight the mod- 
ules suggested by the hierarchical tree. The 
shaded blue boxes along the links display the 
enzymes catalyzing the corresponding reac- 
tions, and the arrows show the direction of 
the reactions according to theWIT metabolic 
maps (15). cCMP, cyclic cytidine 5'-monophos- 
phate; cUMP, cyclic uridine 5'-monophosphate; 
dTDP, deoxythymidine 5'-diphosphate; dTMP, 
deoxythymidine 5'-monophosphate; dTTP, 
deoxythymidine 5'-triphosphate; TDP, thymi- 
dine diphosphate; TMP, thymidine monophos- 
phate; TTP, thymidine triphosphate. 

REPORTS 

phosphate (UMP) from L-glutamine is ex- 
pected to fall within a single module based 
on a linear set of biochemical reactions, 
whereas the synthesis of uridine 5'-diphos- 
phate from UMP leaps putative module 
boundaries. Thus, further experimental and 
theoretical analyses will be needed to un- 
derstand the relation between the decompo- 
sition of E. coli metabolism offered by our 
topology-based approach and the biologi- 
cally relevant subnetworks. 

The organization of metabolic networks 
is likely to combine a capacity for rapid 
flux reorganization with a dynamic integra- 
tion with all other cellular function (11). 
Here we show that the system-level struc- 
ture of cellular metabolism is best approx- 
imated by a hierarchical network organiza- 
tion with seamlessly embedded modularity. 
In contrast to current, intuitive views of 
modularity (Fig. 1B), which assume the 
existence of a set of modules with a non- 
uniform size potentially separated from 
other modules, we find that the metabolic 
network has an inherent self-similar prop- 
erty: There are many highly integrated 
small modules, which group into a few 
larger modules, which in turn can be inte- 
grated into even larger modules. This is 
supported by visual inspection of the de- 
rived hierarchical tree (Fig. 4A), which 
offers a natural breakdown of metabolism 
into several large modules, which are fur- 
ther partitioned into smaller, but more in- 
tegrated submodules. 

The mathematical framework proposed 
here to uncover the presence or absence of 
such hierarchical modularity and to delineate 
the modules based on the network topology 
could apply to other cellular and complex 
networks as well. As scale-free topology has 
been found at many different organizational 
levels, ranging from genetic (23) to protein 
interaction and protein domain (24) net- 
works, it is possible that biological networks 
are always accompanied by a hierarchical 
modularity. Some nonbiological networks, 
ranging from the World Wide Web to the 
Internet, often combine a scale-free topology 
with a community structure (i.e., modularity) 
(25-27); therefore, these networks are also 
potential candidates for hierarchical modular- 
ity. For biological systems, hierarchical mod- 
ularity is consistent with the notion that evo- 
lution may act at many organizational levels 
simultaneously: The accumulation of many 
local changes, which affect the small, highly 
integrated modules, could slowly impact the 
properties of the larger, less integrated mod- 
ules. The emergence of the hierarchical to- 
pology through copying and reusing existing 
modules (1) and motifs (8), a process remi- 
niscent of the results of gene duplication (28, 
29), offers a special role to the modules that 
appeared first in the network. Although the 

model of Fig. 1C reproduces the large-scale 
features of the metabolism, understanding the 
evolutionary mechanism that explains the si- 
multaneous emergence of the observed hier- 
archical and scale-free topology of the me- 
tabolism, as well as its generality to cellular 
organization, is now a prime challenge. 
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