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Natural Product Terpenoids in 

Eocene and Miocene Conifer 

Fossils 

Angelika Otto,'*t James D. White,2 Bernd R. T. Simoneit' 

Numerous saturated and aromatic hydrocarbons, but not polar compounds, 
originating from plants and microorganisms (biomarkers) have been reported 
in sediments, coals, and petroleum. Here we describe natural product terpenoids 
found in two fossil conifers, Taxodium balticum (Eocene) and Glyptostrobus 
oregonensis (Miocene). A similar terpenoid pattern is also observed in extant 
Taxodium distichum. The preservation of characteristic terpenoids (unaltered 
natural products) in the fossil conifers supports their systematic assignment to 
the Cypress family (Cupressaceae sensu lato). The results also show that fossil 
conifers can contain polar terpenoids, which are valuable markers for 
(paleo)chemosystematics and phylogeny. 
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Most sediments contain solvent-extractable 
organic compounds that are derived from 
natural product precursors biosynthesized 
by living organisms. These biomolecules 
are degraded before and after burial in sed- 
iments to their diagenetic products (geo- 
molecules). Despite various chemical trans- 
formations, the geomolecules retain their 
characteristic basic structural skeletons and 
can thus be used as biomarkers for their 
biological origin. Such biomarkers can pro- 
vide information on the source of organic 
matter in sediments, paleoclimate, and gas 
and coal geochemistry, and they can be 
used as tracers in environmental studies 
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(1-4). Most of the previous studies have 
focused on the saturated and aromatic bio- 
marker hydrocarbons. Because the degrada- 
tion of numerous polar precursor molecules 
may result in the generation of the same 
hydrocarbon product (5, 6), the hydrocar- 
bons are characteristic only for wider 
groups of organisms, such as conifers, an- 
giosperms, or bacteria. In contrast, only 
slightly degraded or unaltered polar com- 
pounds are more specific biomarkers, be- 
cause the natural product precursors have a 
distinct distribution in living organisms. 
For this reason, the composition of polar 
compounds in geological samples is of par- 
ticular significance. The preservation po- 
tential of polar compounds in sediments is 
believed to be very low (7) because they 
generally undergo rapid diagenetic process- 
es, such as degradation, reactions with oth- 
er compounds, or bonding to the insoluble 
kerogen (8). Here we show that polar ter- 
penoids can be preserved as unaltered nat- 
ural products in fossil conifers and discuss 
their implications for chemosystematics 
and phylogeny. 
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We analyzed the extractable organic matter 
of seed cones of Taxodium balticum from clays 
of the Eocene Zeitz formation, Germany, to 
search for preserved resin compounds that 
might be useful as chemosystematic markers 
(9-11). The phenolic abietane diterpenoids fer- 
ruginol (compound 1), 6,7-dehydroferruginol 
(compound 2) and sugiol (compound 3) were 
major components in the aromatic fraction of 
the extract from the Eocene Taxodium balticum 
cone (Fig. 1A) (table Si). Two compounds (4 
and 5) with a molecular mass of 448 daltons 

REPORTS 

and similar mass spectra are also detectable as 
major components in the aromatic fraction. We 
also identified 6,7-dehydroferruginol, ferrugi- 
nol, sugiol, and the two unknown compounds 
(4 and 5) in the total extract of a Glyptostrobus 
oregonensis cone from the Miocene Clarkia 
formation, USA (12-13) (Fig. 1B). Ferruginol 
has also been reported previously from lignites 
(14) and an Oligocene sediment rich in Taxo- 
dium balticum (15). 

When we analyzed the seed cone of extant 
Taxodium distichum (swamp cypress) (Fig. 1C) 

for comparison of the terpenoid contents, we 
also detected 6,7-dehydroferruginol, fermginol, 
sugiol, and the two unknown compounds (4 and 
5) together with some diterpenoids (f, g, and k), 
which were previously reported from the spe- 
cies (16). The mass spectra of the newly ob- 
served compounds matched the mass spectro- 
metric fragmentation patterns of the triterpe- 
noids isochamaecydin (4) and chamaecydin (5), 
which have been published (17). Both the mass 
spectra and the gas chromatography retention 
indices of the two triterpenoids (as both free 

Fig. 1. Gas chromatography- 
mass spectrometry traces of total 
ion current (TIC) of (A) the aro- 
matic compound fraction from 
the extract of the seed cone of 
Eocene Taxodium balticum, (B) 
the total extract of the seed cone 
of Miocene Glyptostrobus ore- 
gonensis, and (C) the total extract 
of the seed cone of extant Taxo- 
dium distichum. Compounds are 
analyzed after trimethylsilyl 
(TMS) derivatization: 1. 6,7-dehy- 
droferruginol; 2. ferruginol; 3. 
sugiol; 4. isochamaecydin; 5. 
chamaecydin; a. taxodione ace- 
tate; b. pimaric acid; c. 18- or 
19-hydroxyferruginol; d. 7-ace- 
toxy-6,7-dehydroroyleanone; e. 
communic acid; f. royleanone; g. 
taxoquinone; h. 6-hydroxytaxo- 
quinone; i. isomer of g; k tax- 
odone; I. inuroyleanone; 11,14- 
dioxolambertic acid, 11,14-dioxo- 
pisiferic acid, or similar com- 
pound; m. isomer of l; u. 
unknown; # = sugars. 
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and derivatized compounds) are identical for 
the extant and fossil samples (table S2). The 
extract of a seed cone of extant Glyptostrobus 
pensilis (Chinese water pine) contained 6,7- 
dehydroferruginol, ferruginol, sugiol, pimaric 
acid (b), and 18- or 19-hydroxyferruginol (c), as 
observed in the Miocene Glyptostrobus ore- 
gonensis cone, but isochamaecydin and 
chamaecydin could not be detected (13) (fig. 
S1). 

Terpenoids are abundant constituents of 
extant conifers and are used as chemosys- 
tematic characteristics (18-21). Ferruginol, 
6,7-dehydroferruginol, and sugiol are com- 
mon in extant conifers, especially in the 
families Cupressaceae, Taxodiaceae, and 
Podocarpaceae (18, 20-22). The unusual 
triterpenoids isochamaecydin and chamae- 
cydin have hitherto been identified in only 
two conifer species, Hinoki cypress 
(Chamaecyparis obtusa) and Sugi cedar 
(Cryptomeria japonica) (17, 23, 24). We 
were able to confirm these findings and 
identified isochamaecydin and chamaecy- 
din in the extracts of seed cones of both 
species. Taxodium, Glyptostrobus, and 
Cryptomeria were formerly treated as 
members of the Taxodiaceae, and Chamae- 
cyparis was assigned to the Cupressaceae, 
but Taxodiaceae and Cupressaceae were 
recently merged into one family, Cupres- 
saceae sensu lato (s. 1.) on the basis of 
morphological and molecular genetic data 
(25, 26). The terpenoid compositions de- 
tected here in fossil and extant species of 
former Taxodiaceae support this merger. 
The similarity of the terpenoids in Taxo- 
dium and Glyptostrobus is not surprising, 
as these genera are closely related (25). The 
terpenoid characteristics of fossil Taxodium 
balticum and Glyptostrobus oregonensis 
identified here are thus in accordance with 
their systematic assignment to the Cupres- 
saceae s. 1. based on their morphological 
characteristics. 

The results show that polar natural prod- 
uct precursors can be preserved unaltered 
in fossil conifers and can be used as che- 
mosystematic markers. The applied meth- 
ods offer a new approach for studying the 
(paleo)chemosystematics and phylogeny of 
conifers. The low degree of degradation 
observed in the analyzed material may be 
due to the preservation of terpenoids in 
resinous plant material where the com- 
pounds are probably trapped in the resin 
and protected from degradation or bonding 
into kerogen. Furthermore, the clayey 
sediments should prevent the oxidation of 
the fossil plant material by oxygen-rich 
waters. 
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extant conifers and are used as chemosys- 
tematic characteristics (18-21). Ferruginol, 
6,7-dehydroferruginol, and sugiol are com- 
mon in extant conifers, especially in the 
families Cupressaceae, Taxodiaceae, and 
Podocarpaceae (18, 20-22). The unusual 
triterpenoids isochamaecydin and chamae- 
cydin have hitherto been identified in only 
two conifer species, Hinoki cypress 
(Chamaecyparis obtusa) and Sugi cedar 
(Cryptomeria japonica) (17, 23, 24). We 
were able to confirm these findings and 
identified isochamaecydin and chamaecy- 
din in the extracts of seed cones of both 
species. Taxodium, Glyptostrobus, and 
Cryptomeria were formerly treated as 
members of the Taxodiaceae, and Chamae- 
cyparis was assigned to the Cupressaceae, 
but Taxodiaceae and Cupressaceae were 
recently merged into one family, Cupres- 
saceae sensu lato (s. 1.) on the basis of 
morphological and molecular genetic data 
(25, 26). The terpenoid compositions de- 
tected here in fossil and extant species of 
former Taxodiaceae support this merger. 
The similarity of the terpenoids in Taxo- 
dium and Glyptostrobus is not surprising, 
as these genera are closely related (25). The 
terpenoid characteristics of fossil Taxodium 
balticum and Glyptostrobus oregonensis 
identified here are thus in accordance with 
their systematic assignment to the Cupres- 
saceae s. 1. based on their morphological 
characteristics. 

The results show that polar natural prod- 
uct precursors can be preserved unaltered 
in fossil conifers and can be used as che- 
mosystematic markers. The applied meth- 
ods offer a new approach for studying the 
(paleo)chemosystematics and phylogeny of 
conifers. The low degree of degradation 
observed in the analyzed material may be 
due to the preservation of terpenoids in 
resinous plant material where the com- 
pounds are probably trapped in the resin 
and protected from degradation or bonding 
into kerogen. Furthermore, the clayey 
sediments should prevent the oxidation of 
the fossil plant material by oxygen-rich 
waters. 
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The latitudinal gradient of increasing biodiversity from poles to equator is one of 
the most prominent but least understood features of life on Earth. Here we show 
that species diversity can be predicted from the biochemical kinetics of metabolism. 
We first demonstrate that the average energy flux of populations is temperature 
invariant. We then derive a model that quantitatively predicts how species 
diversity increases with environmental temperature. Predictions are supported 
by data for terrestrial, freshwater, and marine taxa along latitudinal and el- 
evational gradients. These results establish a thermodynamic basis for the 

regulation of species diversity and the organization of ecological communities. 
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Global gradients in biodiversity exist for all 
major groups of terrestrial (1), freshwater (2), 
and marine taxa (3), but the general principles 
underlying their origin and maintenance re- 
main unclear (4, 5). Here we present a theo- 
retical framework that explains gradients of 
species diversity in terms of energetics. Our 
model is derived by extending the well-estab- 
lished "energetic-equivalence rule" (6) to in- 
clude temperature. In its original form, the 
energetic-equivalence rule states that the total 
energy flux of a population per unit area, BT, 
is invariant with respect to body size. Species 
of different size have similar values of BT 
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because individual metabolic rates, Bi, in- 
crease with body size, Mi, as Bi oc Mi34, 
whereas population densities per unit area, 
Ni, decrease with body size as Ni cc Mi-34 
(BT = NiBi oc Mi-3/4Mi34 = M?). This in- 
verse relation between abundance and body 
size is observed for plants and for endother- 
mic and ectothermic animals; it reflects 
mechanistic connections between individual 
metabolic rates, rates of energy flux by pop- 
ulations, and the partitioning of available en- 
ergy among species in a community (6, 7). 

We can extend the energetic-equivalence 
rule to include temperature by incorporating 
the biochemical kinetics of metabolism. Re- 
cent work has shown that whole-organism 
metabolic rate varies with body size and tem- 
perature as B = boM3/4e-E/kT (8), where bo is 
a normalization constant independent of size 
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