
SCIENCE'S COMPASS SCIENCE'S COMPASS 

z 1I + |t% tt f 

0.9- tI 

0.8 . 
3 4 5 6 7 8 9 

Energy (keV) 
Iron lines in stellar mass black holes. (Red) Ratio of the spec- 
trum of XTE J1650-500 (observed with XMM-Newton) to a sim- 
ple disk blackbody and power law. (Blue) Same ratio for Cygnus 
X-1 (from Chandra). Plotting the spectrum in this manner re- 
veals the shape of the iron line, which can be seen as a broad 
bump between 4 and 7 keV. [Data from (7)] 

z 1I + |t% tt f 

0.9- tI 

0.8 . 
3 4 5 6 7 8 9 

Energy (keV) 
Iron lines in stellar mass black holes. (Red) Ratio of the spec- 
trum of XTE J1650-500 (observed with XMM-Newton) to a sim- 
ple disk blackbody and power law. (Blue) Same ratio for Cygnus 
X-1 (from Chandra). Plotting the spectrum in this manner re- 
veals the shape of the iron line, which can be seen as a broad 
bump between 4 and 7 keV. [Data from (7)] 

holes, the inner radius of the 
disk deduced from the iron 
line indicates that matter is 
orbiting much closer than is 
possible for a nonspinning 
black hole. The orbit is clos- 
er to the stable orbit of a 
spinning black hole. The hy- 
pothesis that the fastest spin- 
ning black holes are those 
with the strongest radio 
emission remains untested. 

A further quantity deter- 
mined by the profile of the 
broad iron line is the disk 
inclination. The Doppler 
shifts are larger when the 
disk is seen more edge on, 
affecting mostly the "blue" 
(high energy) wing of the 
line. It is reasonable to sup- 
pose that the disk inclination 
is the same as that of the or- 
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power source; for example, rotational en- bit of the binary companion, in the case of 
ergy may be extracted from a spinning a stellar mass black hole. This has been 
black hole via magnetic connections to the demonstrated for some systems with opti- 
inner accretion disk (14). cal measurements. 

Spinning (Kerr) black holes have been The iron line is a powerful diagnostic 
postulated, but evidence for the spin itself of the immediate environment of stellar 
is only now emerging. For several black mass black holes. It will enable us to test 
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From the swimming of bacteria to commu- 
nications among scientists, organisms de- 
pend on the collection and processing of 

information from the environment, a process 
called signal transduction. The simplest signal- 
ing pathway is a linear cascade, a collection of 
unidirectional arrows that connect a stimulus 
to a response via multiple intermediates. If you 
lived in this oversimplified world, you would 
still be staring at the blinding light that illumi- 
nated the obstetrician who delivered you from 
the darkness of the womb, because your visual 
system would neither have adjusted its thresh- 
old to maximize the sensitivity of its response 
(adaptation), nor returned to its ground state 
(recovery) once your gaze turned to some- 
thing else. Properties like adaptation and re- 
covery result from interactions among com- 
ponents of signaling networks. How do these 
properties reflect the topology of connections 
within a network, in addition to the detailed 
properties of the network's biochemical com- 
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ponents? On page 1018 of this issue, Bhalla et 
al. (1) tackle this question with a combination 
of theory and experiment. They reveal that the 
behavior of a common cellular signaling net- 
work is history dependent, that is, the network 
output depends on the recent history of a cell's 
exposure to the network's activating stimulus. 

Mitogen-activated protein kinase 
(MAPK) cascades are well-studied signal 
transduction systems present in a wide vari- 
ety of eukaryotes. MAPK signaling path- 
ways transduce signals for processes as di- 
verse as mating, cell proliferation, and or- 
gan development. Depending on the cellu- 
lar context, MAPK cascades may provide a 
switchlike all-or-none decision between two 
different responses (2), or a graded re- 
sponse over a wide range of stimulus 
strengths (3). Bhalla and colleagues present 
a systems-level analysis of how the MAPK 
signaling network of cultured mammalian 
cells processes signals (1). They couple 
computational simulations with pharmaco- 
logical inhibition of network components, 
and discover that the network produces two 
qualitatively different intracellular respons- 
es that depend on the cell's prior history. 
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strong gravity, catalog black hole spin, and 
test models for the accretion inflow and 
jetted outflows from these objects. Further 
observations with Chandra and XMM- 
Newton, combined with the Rossi X-ray 
Timing Explorer (RXTE) (15), promise 
more revelations about stellar mass black 
holes. 
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There is a powerful analogy between bio- 
logical signal transduction networks and the 
signal processing systems conceived by engi- 
neers. The input of a typical signal transduc- 
tion system is the concentration of some ex- 
tracellular stimulus or ligand, whereas the 
output is the activity of an intracellular factor 
such as a protein kinase. For Bhalla et al., the 
concentration of platelet-derived growth fac- 
tor (PDGF) is the input of the MAPK net- 
work, and the activity of MAPK is the out- 
put. The amount of MAPK activity is related 
to the extracellular signals to which the cell is 
exposed, but this may not be a simple rela- 
tion. One reason is that the signaling network 
features feedback regulation, which produces 
many complex behaviors (see the figure). 

Bhalla and co-workers produce a quanti- 
tative model of the MAPK network and ex- 
perimentally test its qualitative predictions. 
MAPK initiates two feedback loops, one 
positive and one negative. In simulations 
and experiments, a 5-minute pulse of 
PDGF induces MAPK activity that persists 
for about 30 minutes before slowly declin- 
ing. Positive feedback results in this 
bistable (switchlike) behavior, where a brief 
stimulus flips the system into a state in 
which a positive-feedback loop sustains the 
active state. Bistability thus provides a cel- 
lular memory, allowing a response to out- 
last the stimulus that elicited it. Inhibiting 
either of the two proteins involved in posi- 
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tive feedback has no effect on the initial re- 
sponse, but MAPK is inactivated as soon as 
PDGF is removed, showing that abolishing 
positive feedback destroys the switch. 

A negative-feedback loop produces recov- 
ery and ensures that a pulse of PDGF does 
not permanently activate the switch. The key 
component of this loop is the accumulation 
of MAPK phosphatase (MKP), which 
switches off MAPK activity by removing a 
phosphate group. Experimentally elevating 
MKP levels decreases the initial response to 
PDGF stimulation and prevents active 
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Cellular circuits. (A) The logic of the cellular circu 
by Bhalla et al. (1). The circuit diagram depicts po 
back (green) and negative-feedback (red) loops and 
eral components that lie outside the central switch 
switch activation, the binding of PDGF to its receptc 
leads to the activation of Ras. Activating Ras in turn 
the MAPK cascade, in which a MAP kinase kinase kii 
KKK) activates a MAP kinase kinase (MAPKK), whic 
MAP kinase (MAPK). This cascade activates both 
feedback loop through phospholipase A2 (cPLA2),; 
acid (AA), and protein kinase C (PKC), and a negativ 
loop in which MAPK stabilizes MAPK phosphatase 
induces transcription of its mRNA. Because the po 
back loop is fast, whereas the negative-feedback lc 
MAPK activity is initially maintained after the remoN 
(C). However, as the level of MKP increases, the neE 
back loop dominates and the switch is turned off (C 
of MKP declines slowly after the switch is turned 
the behavior of the switch depends on the recent 
the cell's exposure to PDGF. 

MAPK from persisting after PDGF has been 
removed. In many settings negative-feedback 
loops cause adaptation (4), and recovery after 
PDGF removal can be thought of as adapta- 
tion to the high-MAPK activity state of the 
bistable system. Theory predicts that prior 
exposure to one pulse of PDGF will make 
the response to a second, later pulse shorter 
and more proportional to the PDGF concen- 
tration. Experiment confirms this prediction: 
Experienced cells show a response that in- 
creases with pulse strength, in contrast to the 
switchlike behavior of naive cells. 

Many signaling networks 

vation have both positive- and nega- 
vF: : :tive-feedback loops. They can 

give rise to a variety of behav- 
iors, including switches that re- 

PDGF-R main in their active state after 
the stimulus has been removed, 

s oscillators, and many different 
logical devices (5). Are there 

<KK features of a network that allow 
us to predict its behavior? A re- 
cent Science paper by Guet and 
colleagues (6) reported synthet- 

'Kl- ;MKP ic networks made out of a vari- 
ety of promoters and DNA 
binding proteins. These authors 
showed that networks with the 
same topology of connections 

vation between activating and in- 
hibitory elements can have 
quite different behaviors, dash- 
ing the hope that such topolo- 
gies will be sufficient to de- 

s5- 0 fine the function of signaling 
networks (6). In contrast, gen- 

:KK eral conclusions can be drawn 
from the quantitative biochem- 

KK ical details of the different 
steps in a network. For exam- 

'K :- MKP ple, the combination of a fast 
positive-feedback and slow 
negative-feedback loop can 
produce either a switch or an 

lit analyzed oscillator (a relaxation oscilla- 
sitive-feed- tor or a one-shot switch, in en- 
omits sev- gineering terms), depending 

. (B) During on the strength of the negative 
)r (PDGF-R) feedback. 
stimulates Feedback loops make the re- 

nase (MAP- sponse of the MAPK system 
:h activates history dependent. Apparently a positive- identical cells will respond in 
arachidonic arachdonc different ways to the same stim- re-feedback 
Me feebacd ulus depending on the magni- 

sitive-feed- tude, duration, and timing of the 
Op is slowi last pulses of PDGF they experi- 
ial of PDGF enced. A linear cascade general- 
ative-feed- ly reflects a moving average of 

)). The level its input, but a network can have 
off, and so a more complicated response. 
t history of For instance, it may have a very 

different response to pulsed sig- 

naling than to continuous signaling at any 
level. Phenomena of this sort are well known 
in neurobiology and physiology. For exam- 
ple, when animals respond to gondatropin-re- 
leasing hormone, the pulse frequency of 
stimulation is more important than the aver- 
age level of the hormone (7). The dynamics 
of PDGF signaling in intact animals are not 
known, so it is not clear what aspects of the 
MAPK response are important in vivo. The 
biology of PDGF suggests that responses on 
different time scales are likely to be impor- 
tant. This growth factor, released by platelets 
at wound sites, induces expression of two sets 
of genes important for wound healing: One 
set is required for the slow process of cell 
proliferation, and the other for faster process- 
es, such as recruitment of white blood cells 
and blood clotting (8). 

A cell's history dependence raises im- 
portant questions: How common is this 
dependence, how important is it in deter- 
mining the properties of cells, and how 
long can it persist? Usually, history depen- 
dence is discovered by accident rather than 
by systematic searches, suggesting that we 
have underestimated its importance in bi- 
ology. At a practical level, history depen- 
dence is an important and frightening re- 
minder of how difficult it is to control bio- 
logical experiments. 

Molecular biology succeeded in reducing 
the functions of individual proteins to chem- 
istry, and in discovering the general princi- 
ples that govern the encoding, transmission, 
and expression of genetic information. But 
how do collections of different molecules 
form a signaling network, and how do these 
networks interact to allow cells to mount ap- 
propriate responses to an enormous number 
of different combinations of stimuli? How 
do networks arise and evolve? Evolution 
seems to have maintained only a tiny frac- 
tion of the networks that could exist. At what 
level do existing networks reflect the princi- 
ples of evolutionary engineering, and how 
similar are these principles to those con- 
ceived by human engineers? How often will 
we depend on the details of a particular net- 
work to understand even its qualitative func- 
tion? A long-term dialogue between theoreti- 
cal and experimental analyses is our best 
hope for answering these questions. 
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