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An approach that is often effective for 
solving the K-SAT problem is called local 
search. The search starts from a randomly 
generated truth assignment. One then 
changes or "flips" the truth value of one of 
the variables to try to satisfy more of the 
constraints. Such flips are repeated until a 
satisfying assignment is found. However, 
the set of possible truth assignments is ex- 
ponentially large--2N truth assignments 
for N variables. A large number of flips 
may be required, depending on the struc- 
ture of the search space (9). 

Mezard et al. (1) provide a remarkably 
detailed picture of the search space of a 
random K-SAT problem and introduce a 
new algorithm for finding a satisfying as- 
signment. The algorithm is based on the 
cavity method from statistical physics. In 
this approach, the concept of a cavity field 
is used to measure the tendency of a vari- 
able to be "True" when one of the clauses 
containing the variable is removed from 
the SAT problem. In effect, the method ex- 
ploits the topology of the search space to 
navigate efficiently through the exponen- 
tially large set of assignments. 
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The authors show how the search 
space for k > 3 changes dramatically 
when one approaches the phase transi- 
tion region. For k = 3 and a < 3.92, the 
search space is globally smooth, with the 
solutions grouped together. A basic local 
search method can find a satisfying as- 
signment relatively quickly. However, for 
larger values of a, the space breaks up 
into a number of metastable states, sig- 
naling the onset of search complexity. A 
basic local search method will get 
"stuck" at assignments with a nonzero 
number of unsatisfied clauses. In such 
cases, Mezard et al.'s method still has a 
high probability of finding a satisfying 
assignment. 

Mezard et al.'s technique is general and 
holds promise for a wide range of hard 
computational problems. However, be- 
cause SAT problems in real-world applica- 
tions are not random, the approach may 
have to be adapted for SAT problems that 
are more structured (10-13). The work il- 
lustrates the power of bringing together 
ideas and techniques from statistical 
physicists interested in disordered sys- 
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tems, mathematicians studying combinato- 
rial structures, and computer scientists 
studying computational complexity. 
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ations containing a tri-coordinate 
silicon atom, R3Si+, well separated 
from counterions and solvent 

molecules have been avidly sought for 
decades (1). On page 825 of this issue, 
Kim et al. (2) bring this search to a suc- 
cessful conclusion by presenting the crys- 
tal structure of the salt of such a cation. 

Silicon is in the same group as carbon 
and shares some of its chemical character- 
istics. But silicon chemistry often follows 

- pathways different from those of carbon. 
To understand reaction mechanisms for 

I silicon compounds, one must synthesize 
z 
Io 
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and study silicon analogs of the reactive 
intermediates of organic chemistry. 

The trivalent silyl cation R3Si+ has been 
particularly challenging. To solve this 
problem, chemists have had to view the 
covalent bond in shades of gray rather than 
black and white-as a continuum of elec- 
tronic interactions of varying strength, 
rather than as a link between atoms that is 
either present or absent. New quantitative 
probes for the extent of bonding of ions 
with surrounding species had to be devel- 
oped, and a seeming paradox had to be re- 
solved: Why are R3Si+ cations difficult to 
detect in solution, yet comparatively easy 
to make in the gas phase (3)? 

In normal organosilicon compounds, 
R3Si-Z, silicon is attached to four groups. 
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How can an Si-Z bond be broken in such a 
manner that a trivalent silicon cation is 
created? Researchers have looked to anal- 

ogous carbon compounds, R3C-Z, for an- 
swers. But most Z groups that easily ion- 
ize from R3C-Z to form R3C+ do not readi- 

ly depart from the silicon compound be- 
cause the Si-Z bonds are stronger than the 

equivalent C-Z bonds. 
Hydrogen is unusual in that C-H bonds 

are stronger than Si-H bonds. Hence trans- 
fer of a hydride ion, H-, from R3SiH to a 
carbon cation could lead to the formation 
of a silyl cation. But when the salt of a car- 
bon cation was used as a hydride acceptor 
(4), the products proved to be silyl esters 

(5). If a silyl cation formed at all, it was 
immediately consumed by the counterion. 

Why can a carbon cation, Ph3C+, per- 
sist in the presence of C104-, but a silyl 
cation, R3Si+, is immediately captured by 
this anion? Silicon forms a much stronger 
bond with oxygen than does carbon, and 
silicon cations are stabilized to a lesser ex- 

How can an Si-Z bond be broken in such a 
manner that a trivalent silicon cation is 
created? Researchers have looked to anal- 

ogous carbon compounds, R3C-Z, for an- 
swers. But most Z groups that easily ion- 
ize from R3C-Z to form R3C+ do not readi- 

ly depart from the silicon compound be- 
cause the Si-Z bonds are stronger than the 

equivalent C-Z bonds. 
Hydrogen is unusual in that C-H bonds 

are stronger than Si-H bonds. Hence trans- 
fer of a hydride ion, H-, from R3SiH to a 
carbon cation could lead to the formation 
of a silyl cation. But when the salt of a car- 
bon cation was used as a hydride acceptor 
(4), the products proved to be silyl esters 

(5). If a silyl cation formed at all, it was 
immediately consumed by the counterion. 

Why can a carbon cation, Ph3C+, per- 
sist in the presence of C104-, but a silyl 
cation, R3Si+, is immediately captured by 
this anion? Silicon forms a much stronger 
bond with oxygen than does carbon, and 
silicon cations are stabilized to a lesser ex- 

www.sciencemag.org SCIENCE VOL 297 2AUGUST 2002 www.sciencemag.org SCIENCE VOL 297 2AUGUST 2002 

I I 

Protein folding Protein folding Planning and scheduling Planning and scheduling 

A variety of problems reducible to the satisfiability problem. A variety of problems reducible to the satisfiability problem. 

785 785 

0 

0 
10 

--.O-m 

0 

0 
10 

--.O-m 



tent than their carbon analogs by distribut- 
ing their positive charge over attached 
groups. This lessened charge "delocaliza- 
tion" can be understood by comparing 
trivalent silicon and carbon cations (see 
the figure). 

Attempts to stabilize silyl cations 
through the ionization of silyl perchlorates, 
R3Si-OC103, encountered new problems 
(6). Salts were formed, but the cations, ini- 
tially thought to be free R3Si+ (7), were re- 
vealed by 29Si nuclear 
magnetic resonance 
(NMR) spectroscopy 
(8) to be complexes of 
the desired silyl cations 
with solvent molecules 
("Solv") involving 
some degree of cova- Z ( 
lent bonding. The sili- 
con atoms in these y Si 
complexes, which we 
can represent as 
R3Si ...Solv+ , are be- 
tween three- and four- 
coordinate, and most Larger p-orbital 
of the positive charge on Si and long 
is carried by the sol- Si-C bond 
vent molecule. O 
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free R3Si+ came with 
the development of 
counterions and sol- 
vents less prone to 
forming bonds with a 
silyl cation. A major 
breakthrough was the 
discovery that simple 
aromatics like benzene or 
ficiently polar to dissolve 
suitably noncoordinating ( 

With simple alkyl sul 
con, salts of R3Si+ wi 
traphenylborate countei 
were formed. NMR sp 
however, that the silyl cat 
entirely free (9). Loose ( 
solvent was confirmed b 
ture of Et3Si+ (C6F5)4B- 
toluene (10). The crystal 
terpreted as a silyl catiol 
nation to its counterion b 
nation to a solvent mole 
and extent of this coordi 
troversial. Linus Pauling, 
papers published in his li 
bond order of 0.35 for the 
complex, meaning that 6 
ter was assigned to this 
solid-state environment (. 

For a free R3Si+ catior 
three pendant groups sho 
and the average bond an] 
dinate silicon should be I 
state Et3Si+ ...toluene cc 
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age angle was only 114? (10). With a dif- 
ferent counterion, Reed et al. achieved a 
bond angle of 117? in an intimate ion pair 
with iPr3Si+, and deduced a Pauling bond 
order of 0.40 (12, 13). 

From the quantitative criteria available 
in the mid-1990s, Reed and Lambert con- 
cluded that the freest silyl cations observed 
in the condensed phase until then were only 
about one-third to two-thirds of the way 
from a tetracoordinate silane to a tricoordi- 

Comparing like with unlike. The vacant p orbital holding most of the 
positive charge on R3Si+ is larger (1) than the corresponding orbital on 
R3C+ (2), and the Si-C bond is longer than the C-C bond. Si-C it-bond- 
ing is therefore weaker than C-C it-bonding (1, 2). Donation of o-elec- 
tron density to Si from adjacent Y-Z bonds is diminished relative to C 
by the longer Si-Y bond (3). The Si atom of R3Si+ is less able to attract 
the electron pair that it shares with an attached R group than is the C 
atom of R3C+ because of the lower electronegativity of Si (4). 

toluene were suf- nate silyl cation (6, 12). Calculations sug- 
silyl cations and gested that some complexation of R3Si+ oc- 

counterions (9). curs even in species with cation affinities 
bstituents on sili- as low as those of methane, argon, and 
ith perfluorote- neon (14). These calculations seemed to in- 
rions, (C6F5)4B-, dicate that R3Si+ could never be free of 
?ectra indicated, complexation in any solvent, leading Ar- 
ions were still not shadi et al. to conclude that "the free silyli- 
coordination with um cation in solution is a fiction" (15). 
)y an x-ray struc- But Lambert and Reed were not de- 
crystallized from terred. They searched for bulky sub- 
structure was in- stituents R that could keep both solvent 

n with no coordi- molecules and counterions at a distance 
ut distant coordi- from the tricoordinate silicon atom beyond 
-cule. The nature the range of complexation. The mesityl 
ination were con- group, 2,4,6-trimethylphenyl (Mes), led to 
in one of the last success, but only after another problem 

fetime, deduced a was overcome. The bulk of the Mes groups 
e Et3Si+ ...toluene prevented the generation of Mes3Si+ from 
35% ionic charac- Mes3SiH by removal of a hydride ion, be- 
silyl cation in a cause the reagent that accepted hydride 

11). from less crowded R3SiH molecules could 
i, the bonds to the not come close enough to abstract the H- 
ould lie in a plane, from Mes3SiH (9). 
gle to the tricoor- Lambert and Zhao cleverly replaced the 
120?. In the solid- hydride leaving group by attaching to 
)mplex, the aver- Mes3Si a long narrow group, CH2CH=CH2, 

which extended beyond the congested 
space dominated by the mesityl groups 
and could thus be attacked by an elec- 
trophile (16). 29Si NMR showed that the 
product of this reaction was a Mes3Si+ 
silylium ion free of interaction with its 
counterion Y- and with solvent molecules: 
The observed chemical shift matched that 
predicted by calculations for the gas-phase 
ion and stayed constant with changes in 
the counterion and solvent. The one fur- 
ther piece of desired evidence-the de- 
tailed geometry from an x-ray crystal 
structure-is provided in this issue (2). 

Is there room for further argument? Of 
course, there always is. The Mes3Si+ 
cations are indeed far removed from their 
counterions and from the benzene solvent 
molecules (2). But the question will in- 
evitably be raised whether the methyl 
groups that protect the cationic silicon 
center from external attack themselves 
complex the silicon center. Such in- 
tramolecular complexes of C-H bonds 
with transition metal are known as "agos- 
tic interactions." Reed and Lambert argue 
that such internal solvation is not present 
here. A theoretical calculation whose pre- 
dictions were in close agreement with the 
experimental data found no sign of inter- 
nal solvation. 

With the latest work of Kim et al. (2), 
the era of silyl cation discovery is drawing 
to a close. But one can anticipate an 
equally eventful period of exploration and 
application. 
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