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with PMA and ionomycin, CD4+ T cells from 
LATY136Fm/m mice produced large amounts 
of IL-4 relative to CD4+ T cells from het- 
erozygous knock-in or LAT+'+ mice (Fig. 
2B). Consistent with the TH2 cytokine profile, 
serum concentrations of immunoglobulins 
GI, E, and M were elevated (fig. S6) and the 
multiorgan infiltrates in LATY136Fm'm mice 
included large numbers of eosinophils (9). 
Lastly, LATY136Fm/m mice also had elevated 
serum levels of DNA and nuclear antigen 
autoantibodies (fig. S6). 

The in vivo effects of a defined point mu- 
tation in LAT reveal a role for the PLC-yl- 
calcium signaling pathway in early T cell 
development. Calcium signaling is impor- 
tant for setting the threshold for negative 
selection in the thymus (19, 20). Thus, in 
LATY136Fm/m mice, thymocytes that nor- 
mally would be eliminated by negative se- 
lection may survive and populate the pe- 
riphery. These cells may differ from normal 
T cells in their requirement for PLC--y1 for 
Ras-Erk activation. In this regard, it is no- 
table that PLC--yl-DAG independent acti- 
vation of Ras has been described in periph- 
eral blood-derived T cells (21) and that the 
LAT132YF mutant protein retains the ability 
to recruit Grb2 together with the Ras guanine 
nucleotide exchange factor Sos after TCR 
stimulation (3-5). Alternatively, the low lev- 
els of catalytically active PLC--yl generated 
in LAT136YFI'm T cells may be sufficient to 
activate Ras-GRP or protein kinase C, result- 
ing in Ras-Erk activation. The profound dis- 
turbance in T cell homeostasis caused by the 
selective loss of PLC-yl-mediated signaling 
but not Erk signaling in LATY136Fm"m mice 
further demonstrates a critical role for LAT in 
integrating signaling downstream of the 
TCR. 
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Cerebeltum Activation 
Associated with Performance 

Change but Not Motor Learning 
R. D. Seidler,l'2-* A. Purushotham,3 S.-G. Kim,3 K. Ugurbil,3 

D. Willingham,4 J. Ashe' 2t 

The issue of whether the cerebellum contributes to motor skill learning is 
controversial, principally because of the difficulty of separating the effects of 
motor learning from changes in performance. We performed a functional mag- 
netic resonance imaging investigation during an implicit, motor sequence- 
learning task that was designed to separate these two processes. During the 
sequence-encoding phase, human participants performed a concurrent distrac- 
tor task that served to suppress the performance changes associated with 
learning. Upon removal of the distractor, participants showed evidence of 
having learned. No cerebellar activation was associated with the learning phase, 
despite extensive involvement of other cortical and subcortical regions. There 
was, however, significant cerebellar activation during the expression of learning; 
thus, the cerebellum does not contribute to learning of the motor skill itself but 
is engaged primarily in the modification of performance. 

Despite extensive research, the role of the 
cerebellum in learning motor skills remains 
controversial (1, 2). The concept of the 
cerebellum as a learning machine comes 
from the theoretical work of Marr (3) and 
Albus (4) and has been supported by data 
showing that it is essential for adaptive 
modification of reflex behavior (5, 6) and 
is activated during motor learning (7-9). 
However, learning invariably leads to 
changes in motor performance, which in 
itself can activate the cerebellum (10, 11). 
Previous efforts to deal with the issue of 
learning versus performance have required 
complex behavioral manipulations, such as 
subtracting an estimate of the performance 
effect (9). Here, we present a learning par- 
adigm in which learning and performance 
change are effectively dissociated, using a 
modification of the serial reaction time task 
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(12, 13). Typically, participants learn the 
sequence embedded in the serial reaction 
time task within a few hundred trials. How- 
ever, when asked to perform the task con- 
comitantly with certain distractor tasks, 
they show no evidence of sequence learn- 
ing (14). When retested upon removal of 
this distractor, it is evident that participants 
did actually learn the sequence during the 
initial training. Therefore, the distractor 
task served only to suppress performance 
change but did not prevent learning, allow- 
ing the determination of the underlying 
neural substrates for sequence learning sep- 
arately from performance. 

We obtained high-field (4 T) functional 
magnetic resonance imaging (fMRI) images 
of the cerebellum (15, 16) in participants 
performing the modified serial reaction time 
task. Participants (n = 6) pressed one of four 
buttons with the right hand when instructed 
by a visual display. Trials were presented in 
blocks in which the lights were illuminated 
either randomly or on the basis of a 12- 
element repeating sequence. During the en- 
coding phase, participants performed the se- 
quence task concurrently with a distractor 
task, whereas for the expression phase the 
distractor was absent. Finally, participants 
were probed for their awareness of the exis- 
tence of the sequence with a questionnaire 
and then asked to perform a free recall task. 

During the encoding phase, there were no 
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changes in performance either on the basis of 
response time (RT) or in the number of errors 
across the four blocks with the repeating 
sequence (Fig. 1, P > 0.1). Despite the ab- 
sence of performance changes, however, par- 
ticipants did learn the sequence, as shown by 
the savings in response time and errors during 
the sequence as compared to the random 
presentation observed during the expression 
phase (P < 0.01 for response time, P < 0.05 
for errors). In addition, there was a savings in 
performance during block 8 (sequence per- 
formance upon expression) compared to the 
average of blocks 2 through 5 (sequence per- 
formance during encoding, P < 0.01 for RT, 
P < 0.05 for errors). This comparison vali- 

dated the performance-inhibiting effects of 
the distractor. Sequence learning was implic- 
it, because the participants could only recall, 
on average, 3.6 of the 12 sequence elements 
(17). One might argue that the participants 
learned the sequence during the one block of 
trials to which they were exposed without the 
distractor; however, it has already been 
shown that this does not occur in this para- 
digm (17). 

Functional imaging data were analyzed 
separately (i) for the encoding phase and (ii) 
for the expression phase (18-21). We tested 
two separate models of learning-related ac- 
tivity across the sequence-encoding blocks, 
based on the assumption that learning-related 

Fig. 1. Temporal separation of 400- A 
learning and expression. (A) Re- 
sponse time data (mean and SD 
values). It can be seen that there gE350 [ 
was no change in response time @ 
for repeated sequence presenta- E 
tions during concurrent perfor- 300- 
mance of the distractor task. . 
There was a response time ad- \ 
vantage for the sequence block X 250 
once the distractor had been re- o 
moved. (B) Number of errors 
made for each block. The pattern 200 
of results is the same as in (A). R S S S S R R S R 
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Block *P < .01 
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activity could be either early or late (22, 23). 
The first model assumed that activity was 
initially high for the sequence scans as com- 
pared to the control period and then dimin- 
ished across the remaining sequence blocks. 
The second model assumed that there was an 
increasing difference between the task and 
control periods across sequence blocks. Both 
models were tested with linear and exponen- 
tial functions, because learning processes 
may conform to either function (24). During 
the encoding phase, learning-related activity 
was documented in the parietal, prefrontal, 
and motor cortex, as well as in the thalamus 
(25, 26) (Table 1). We detected no activation 
in the cerebellum during the encoding phase 
with any of the models (27). By contrast, we 
found prominent activation in the cerebellum 
during the expression of learning, as assessed 
by comparing the difference between task 
and control periods in the sequence block 
with that of the two random blocks during the 
expression phase (28). The active sites were 
in bilateral lobule VI (Fig. 2A and Table 2). 
The time course of activation during the ex- 
pression of learning (Fig. 2B) was the inverse 
of the performance data shown in Fig. 1. 
Correlations between individual differences 
in response time savings and the intensity of 
activation were significant for sites within the 
cerebellum that overlapped with those ob- 
served from the expression contrast. This cor- 
relation analysis further validated the idea 
that the activation of the cerebellum during 
the expression of learning was related to an 
individual's behavioral performance. 

In the current experiment, the use of a visual 
distractor task effectively separated the process 
of motor skill acquisition from its expression. 
Thus far, the only work to successfully separate 
learning from expression, in investigations of 
cerebellar function, is that examining the acqui- 
sition and expression of the conditioned eye- 
blink response in animals (29). Therefore, al- 
though it appears that the cerebellum may me- 
diate some types of learning such as eyeblink 
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Fig. 2. Cerebellar activation during expression of learning. (A) Areas of 
activation for the expression of learning contrast (left) and for the 
regression with individual participants'. response time savings (right). The 
peak of activation was in bilateral lobule VI for both contrasts. (B) 
Changes in activation averaged across these areas for the encoding and 

expression blocks. The activation was computed as the average ampli- 
tude during the control period subtracted from that during the task 
period of each block, for the clusters activated in (A) (bars reflect the 
standard error). There was no change in activation until the expression 
blocks. 
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Table 1. Coordinates of local maxima for the areas showing learning-related activation during 
sequence encoding. R is right hemisphere, L is left hemisphere; PM refers to premotor; BA, 
Brodmann area. 

Area activated Coordinates of Z score of peak 
peak activation activation 

Premotor cortex 
L BA 6 (ventral PM cortex) -58, 6,18 3.47 

Motor cortex 
L BA 4 -38,-16,50 2.10 

Prefrontal cortex 
R BA 9 46, 8, 36 3.40 

Cingulate cortex 
R BA 24/32 8, 30, 24 2.28 

Parietal cortex 
L BA 7 -20, -48, 44 4.14 
L BA 40 -32,-36, 56 2.04 
R BA 40 48,-38, 54 2.39 

Subcortical activation 
R thalamus 28,-32, 2 2.16 
R thalamus 20,-26, 12 3.27 

Table 2. Coordinates of local maxima for the cerebellar areas activated at expression of learning 
and for those correlated with individual differences in response time savings. 

Coordinates of Z score of peak 
peakc peak ~~~~~~~~activation activation 

Areas activated at expression of learning 
Cerebellar cortex 

L lobule VI -28,-76,-22 3.46 
R lobule VI 20,-74,-26 3.09 

Areas correlated with response time savings across participants 
Cerebellar cortex 

L lobule VI -30,-76,-22 2.50 
R lobule VI 16,-76,-24 3.27 

conditioning (30), our data indicate that, during 
the acquisition of a motor skill, the cerebellum 
does not contribute to sequence learning per se 
but rather to its expression. 

It is not entirely clear how the cerebellum 
contributes to improvement in performance, 
and the current experiment did not address this 
issue. There are, however, a number of possible 
explanations, including improved coordination 
of movement timing (31) and enhanced motor 
planning (32). Ample evidence underscores the 
importance of the cerebellum for the modula- 
tion of response time. Both lesions of the cer- 
ebellum in patients (33, 34) and reversible in- 
activation of the dentate nucleus by cooling in 
experimental animals (35, 36) lead to delays in 
response time and in movement initiation. Oth- 
er imaging studies have found a negative asso- 
ciation between blood flow in the cerebellum 
and response time (32). Collectively, these re- 
sults suggest that the cerebellum plays a critical 
role in motor response facilitation, which is 
manifested in the present experiment by the 
improvement in performance seen during the 
expression phase. 
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A Heat-Sensitive TRP 
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Mechanical and thermal cues stimulate a specialized group of sensory neurons 
that terminate in the skin. Three members of the transient receptor potential 
(TRP) family of channels are expressed in subsets of these neurons and are 
activated at distinct physiological temperatures. Here, we describe the cloning 
and characterization of a novel thermosensitive TRP channel. TRPV3 has a 
unique threshold: It is activated at innocuous (warm) temperatures and shows 
an increased response at noxious temperatures. TRPV3 is specifically expressed 
in keratinocytes; hence, skin cells are capable of detecting heat via molecules 
similar to those in heat-sensing neurons. 

TRPs belong to a large family of nonselective 
cation channels that function in a variety of 
processes, including temperature sensation 
(1, 2). Vanilloid receptor 1 (TRPV1, also 
called VR-1) is activated by noxious heat 
(>420C) (3). TRPV2 (VRL-1) is also acti- 
vated by heat, but with a higher threshold 
(>50'C), whereas TRPM8 (CMR1) is in- 
duced by cool/cold temperatures (<250C) 
(4-6). A receptor for innocuous warm tem- 
peratures has not been identified. Also, the 
persistent sensitivity of VR-1 knockout an- 
imals to moderately noxious heat stimuli 
implies the presence of another heat recep- 
tor (7, 8). 

We searched DNA databases for TRPV1- 
related TRP channels by constructing a hid- 
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den Markov model (HMM) of the TRPV1 
and TRPV2 protein sequences from different 
mammalian species. With this model, we 
queried the six-frame translation of human 
genomic sequences and identified multiple 
putative exons with a great degree of se- 
quence similarity to the ankyrin and trans- 
membrane domains of TRPV1. We mapped 
these exons to two genes, one of which is 
now known as TRPV4 (9, 10). The other 
gene we have named TRPV3. Full-length 
sequence of mouse TRPV3 (GenBank acces- 
sion number AF510316) was derived from a 
combination of exon prediction software, 
polymerase chain reaction, and rapid ampli- 
fication of cDNA ends (RACE) from new- 
born skin cDNA (11). Several murine ex- 
pressed sequence tags from skin tissues 
contain 3'-untranslated region TRPV3 se- 
quence (e.g., BB148735, BB148088), and re- 
cently the human TRPV3 sequence has been 
annotated in GenBank (accession numbers GI 
185877 and GI 18587705) (12). 

The predicted TRPV3 protein is com- 
posed of 791 amino acid residues. The overall 

sequence of mouse TRPV3 has 43% identity 
to TRPV1 and TRPV4, 41% to TRPV2, and 
20% to TRPV5 and TRPV6 (fig. SI). TRPV3 
has six putative transmembrane domains and 
four predicted NH2-terminal ankyrin domains 
that are thought to be involved in protein- 
protein interactions. We also identified two 
coiled-coil domains NH2-terminal to the 
ankyrin domains in TRPV3 (fig. SI). Coiled- 
coil domains have been previously reported 
to be present in some TRP channels, but not 
in TRPVs (6, 13). Further examination 
showed that TRPV1, but not the other mem- 
bers of the TRPV family, also has putative 
coiled-coil domains in the same location. In- 
terestingly, both TRPV1 and TRPV3 were 
predicted to reside on human chromosome 
17pl3 and mouse chromosome 1 1B4. Our 
mapping analysis of bacterial artificial chro- 
mosome clones, and later the assembled hu- 
man and mouse genome sequences, revealed 
the distance between the two genes to be 
about 10 kb (Fig. iB) (14). 

Given the high degree of homology of 
TRPV3 to TRPV family members, we tested 
whether TRPV3 responds to stimuli that ac- 
tivate other closely related family members. 
The murine full-length TRPV3 was stably 
expressed in Chinese hamster ovary (CHO) 
cells, which do not express an endogenous 
TRPV3 isoform (11, 14). Transfected cells 
were assayed electrophysiologically by 
whole-cell voltage-clamp techniques (11). 
Capsaicin (1 jiM), an activator of TRPV1, 
did not evoke a response in TRPV3-express- 
ing cells (14). Similarly, no current responses 
were seen when TRPV3-expressing cells 
were challenged with a hypo-osmotic solu- 
tion containing 70 mM NaCl or with low pH 
(pH 5.4) (14). However, raising the temper- 
ature of superperfused external solution from 
room temperature to 45?C evoked currents in 
TRPV3-expressing cells. Analysis of currents 
evoked by temperature ramps from -150 to 
-48?C (Fig. 2A) showed that little current 
was elicited until temperatures rose above 
-330C and that the current continued to in- 
crease in the noxious temperature range 
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