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Irreversible processes as diverse as mechan- 
ically induced protein unfolding, the fracture 
of stressed materials, and the sudden forma- 
tion of crystallization nuclei all involve the 
time evolution of states far removed from 
equilibrium. To characterize these nonequi- 
librium states, it is generally necessary to 
specify numerous details of the system and its 
surroundings. By contrast, reversible process- 
es are idealizations in which a system passes 
only through a succession of equilibrium 
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states, which can be described completely 
with only a few variables such as pressure 
and temperature. Reversible processes are 
powerful tools in thermodynamics because 
they make it possible to relate the measured 
heat and work to the thermodynamic state 
variables. Yet many processes in nature relax 
to equilibrium only very slowly, precluding 
quasi-reversible experiments and thus pre- 
venting measurement of the thermodynamic 
state variables. Solving the problem of recov- 
ering thermodynamic variables from irrevers- 
ible experiments remains one of the unfin- 
ished tasks in thermodynamics. 

It follows from the laws of thermodynam- 
ics, first formulated in the early 19th century, 
that the increase in Gibbs free energy AG and 
the mean work (w) needed to bring about that 
increase are related by AG ' (w). The equal- 
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ity holds when a process is carried out revers- 
ibly, and the inequality holds otherwise. In 
1951, Callen and Welton realized that for any 
system that remains near equilibrium, the 
energy dissipated is proportional to the sys- 
tem's fluctuations (1). With this fluctuation- 
dissipation relation, researchers acquired a 
better estimate of AG for irreversible process- 
es: AG (w) - 3o'2/2, where ur is the stan- 
dard deviation of the work distribution and 
p-1 - kBT (where T is absolute temperature 
and kB is Boltzmann's constant) (2-4). Un- 
fortunately, this AG estimate is valid only in 
the near-equilibrium regime, and so it was 
thought that free energies could only be 
obtained for processes remaining close to 
equilibrium. 

This state of affairs changed in 1997, 
when Jarzynski derived an equality (5-8) that 
relates the free energy difference separating 
states of a system at positions 0 and z along a 
reaction coordinate, AG(z), to the work done 
to irreversibly switch the system between two 
states, 

exp[- 3AG(z)] =limN__(exp[- f3wi(z,r)])N 

(1) 

where ( )N denotes averaging over N work 
trajectories, wi(z,r) represents the work of the 
ith of N trajectories, and r is the switching 
rate (9). The mechanical work wi(z,r) re- 
quired to switch the system between positions 
0 and z under the action of a force F is 
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(2) (2) wi(z,r) Fi(z',r)dz' 
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where F,(z',r) is the external force applied to the 
system at position z' with switching rate r (10). 
Equations 1 and 2 state that the free energy 
change for a reaction can be determined by 
averaging Boltzmann-weighted work values 
obtained from repeated irreversible switching 
of the system (11, 12). Unlike most expressions 
relating equilibrium and nonequilibrium statis- 
tical mechanics, Jarzynski's equality holds for 
systems driven arbitrarily far from equilibrium 
[for other relations that are valid in the far- 
from-equilibrium regime, see, e.g. (13-20)]. 
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Despite its possible application to systems 
where the equilibrium regime is not accessi- 
ble, Jarzynski's equality has not previously 
been tested experimentally. Here, we carry 
out such a test and demonstrate the practical 
application of the equality by using it to 
extract AG values from nonequilibrium sin- 
gle molecule pulling experiments. Specifical- 
ly, we compare the performance of three 
different AG estimates: the average work 
W^ = (w)N, the fluctuation-dissipation esti- 
mate WFD = (W)N - p0r2/2, and the estimate 
obtained from Jarzynski's equality, WjE = 
-- 1 ln(exp(-3w))N (21). 

Several requirements must be met to test 
Jarzynski's equality. First, the equilibrium 
and nonequilibrium regimes must both be 
experimentally accessible. Second, although 
Jarzynski's equality applies in theory to sys- 
tems of any size driven arbitrarily far from 
equilibrium, the experimentally reachable 
number N of experiments limits the use of Eq. 
1 to systems in which the standard deviation 
of the work values is not much greater than 
kBT (5, 10). Thus, the system must be micro- 
scopic. Third, measurement error must be 
kept sufficiently low over a large number of 
switching trajectories. 

Our criteria for verification of the equality 
are as follows. First, Jarzynski estimates WjE 
obtained from experiments done at different 
nonequilibrium switching rates must coincide 
to within experimental error. This criterion 
tests the validity of Jarzynski's equality under 
perturbations of different strengths. Second, 
the various WjE estimates must also coincide 
to within experimental error with our best 
independent estimate of AG-the mean work 
of reversible quasi-static switching, WA^ re. 

Fig. 1. (A) Sequence and secondary structure of 
the P5abc RNA. (B) RNA molecules were at- 
tached between two beads with RNA-DNA hy- 
brid handles. 

REPORTS 

Our experimental system is the mechanical 
unfolding of single RNA molecules derived 
from the P5abc domain of the Tetrahymena 
thermophila group 1 intron (Fig. 1A) (22). Me- 
chanical unfolding of P5abc is well suited to 
test Jarzynski's equality because both regimes 
of interest are experimentally accessible: P5abc 
unfolds reversibly when stretched slowly and 
irreversibly when stretched more rapidly. Fur- 
thermore, the mechanical unfolding reaction 
follows an externally imposed and well-defined 
reaction coordinate, the molecular end-to-end 
extension z. Individual RNA molecules were 
attached to 2- to 3-1xm polystyrene beads by 
RNA-DNA hybrid handles and complementary 
DNA-bead chemistry (Fig. 1B) (23). One bead 
was held in a force-measuring optical trap (10, 
23, 24) and the other bead was linked to a 
piezoelectric actuator through a micropipette 
tip. Molecules were stretched by moving the tip 
bead; the force acting on the RNA was deter- 
mined by measuring the deflection of the trap- 
ping laser beams with position-sensitive photo- 
detectors. Experiments were performed at a 
temperature of 298 to 301 K. 

We unfolded the P5abc domain at slow (2 
to 5 pN/s) and fast (34 and 52 pN/s) rates. 
Each fast unfolding-refolding cycle was im- 
mediately followed by one slow cycle. By 
interleaving fast and slow unfolding-refold- 
ing cycles, we could monitor drift of the zero 
force point in the instrument and of the mo- 
lecular end-to-end extension, and thus reduce 
instrumental artifacts in the difference be- 
tween the work done at the fast and slow rates 
(25). An RNA molecule was switched N 
times between the folded and unfolded con- 
formations, and then values for WA, WFD, and 
WJE of the fast and slow cycles were com- 
puted. Seven independent data sets were col- 
lected, each with a different RNA molecule 
and about 40 unfolding-refolding cycles per 
switching rate. Data for unfolding-refolding 

A 

rates of 2 to 5 pN/s, 34 pN/s, and 52 pN/s are 
shown in blue, green, and red, respectively, in 
Figs. 2 and 3. 

To confirm that unfolding-refolding of 
P5abc is reversible at our slowest switching 
rates, we quantified the mean work difference 
between the forward and backward curves. In 
these conditions, P5abc unfolding and refold- 
ing curves nearly coincide. Initially, the 
force-extension curve increases monotonical- 
ly as the molecular RNA-DNA handles are 
stretched against entropic elasticity (Fig. 2A, 
blue). At -10 pN, the RNA molecule begins 
to unfold. Above -14 pN, the force-exten- 
sion curve again increases monotonically and 
is dominated by the molecular handles. Here 
and below, we consider only 30 nm of the 
pulling reaction (341 to 371 nm) because 
handle stretching is reversible at all our 
switching rates. Accordingly, we place the 
lower integration limit of Eq. 2, z = 0, at 341 
nm. At this slow switching rate, the differ- 
ence between the mean work of forward and 
backward curves is smaller than kBT at any 
position along the pulling coordinate z from 0 
to 30 nm (N = 24 curves). We estimated the 
experimental error in our measurements to be 
+kBT/2 and used this value as the threshold 
beyond which discrepancies between energy 
estimates are significant. Slow unfolding-re- 
folding of P5abc was experimentally indistin- 
guishable from a reversible process and 
yielded a AG between the folded and unfold- 
ed states of 60.2 + 1.6 kBT. 

Next, we performed the same experiment 
irreversibly, stretching P5abc and the RNA- 
DNA handles rapidly. As before, the begin- 
ning and end of the stretching process are 
reversible (Fig. 2A, red), demonstrating that 
the relaxation rate of the handles is rapid 
relative to all three switching rates (26). By 
contrast, hysteresis is observed in the middle 
of the process (Fig. 2A, red; between 9 and 

30 nm Extension (nm) 50 nm 

Fig. 2. Force-extension unfolding curves of PSabc at three different switching rates. (A) Typical 
force-extension unfolding (U) and refolding (R) curves of the P5abc RNA in 10 mM EDTA in 
reversible (blue, 2 to 5 pN/s) and irreversible (red, 52 pN/s) switching conditions. (B) Two 
experiments are shown: one in which a molecule was unfolded at rates of 2 to 5 pN/s and 34 pN/s 
(left pair, blue and green), and another in which the molecule was unfolded at rates of 2 to 5 pN/s 
and 52 pN/s (right pair, blue and red). Curves (superposition of about 40 curves per experiment) 
were smoothed by convolution with a Gaussian kernel. 
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12 pN), illustrating that P5abc RNA unfold- 
ing is slow compared to the switching times 
at 34 and 52 pN/s. As shown in Fig. 2B, at 
these rapid switching rates (green and red 
curves) the force-extension curves in the re- 
gion dominated by P5abc RNA unfolding are 
higher in force and more broadly distributed 
than during reversible unfolding (blue 
curves). However, the refolding curves are 
slightly lower in force than the reversible 
curves [on average by 0.3 pN (27)]. 

The performance of the three different 
types of AG estimates for reversible switch- 
ing is shown in Fig. 3A. The dissipated work 
Wdiss is defined as the difference between the 
actual work performed on the system and the 
reversible part of that work; solid lines show 
the mean dissipated work, (Wdiss) = (WA - 

WA,rev), where the brackets now represent 
averaging over m data sets (m = 7) and W 
still represents averaging over the N pulls 
within a data set. Dotted lines show (WD - 
WA,rev), the mean difference between the 
fluctuation-dissipation AG estimate, WFD, 
and the reversible work. Dashed lines show 
(WJE - WA,rev), the mean difference between 
the AG estimate from Jarzynski's equality, 
WJE, and the reversible work. In this revers- 
ible case, the AG estimate obtained via Jar- 
zynski's equality is no different from the one 
obtained using the fluctuation-dissipation re- 
lation (note the coincidence to within O.1 kBT 
of the dashed and dotted blue lines). The 
coincidence of WFD and WJE for the revers- 
ible curves is consistent with theoretical pre- 
dictions for near-equilibrium conditions (21). 

At these slow switching rates, WED and 
WjE both decay gradually with increasing z, 
leading to underestimation of AG by 1.4 kBT 
at z = 30 nm (Fig. 3A). Such AG underesti- 
mation is large under conditions of slow 
switching and results from two related ef- 
fects. First, the longer the switching time, the 
more low-frequency instrument noise will ac- 
cumulate during the experiment, increasing 
the measured standard deviation of work val- 
ues, a. Second, the distribution of molecular 
work values narrows as the RNA molecule is 
unfolded more slowly, and this increases the 
relative contribution of low-frequency instru- 
ment noise to the measured o(. Because the 
dominant contribution to WjE comes from 
values in the lower tail of the work distribu- 
tion, this and related estimates of AG are 
particularly sensitive to artifacts that increase 
o (28). 

Figure 3B shows the performance of the 
three different types of AG estimates for 
irreversible switching. By z = 30 nm, irre- 
versible unfolding (solid green and red 
curves) leads to dissipation of --2 to 3 kBT 
compared to reversible unfolding (solid 
blue curve; yellow band, our experimental 
error of +kBT/2). The dissipated work is 
the energy penalty for switching a system 

Extension z (nm) 

0 

0" 

a. 

Fig. 3. (A) Estimation of free energy profile from reversible switching (r = 2 to 5 pN/s, blue). 
For each of the seven data sets, we determined the mean work WA, the fluctuation-dissipation 
AG estimate WFD, and the AG estimate from Jarzynski's equality, WJE. Next, we subtracted 
WA,rev from those energies. Finally, we averaged those differences over data sets, yielding the 
average dissipated work (WA - WA,rev) (solid yellow band, ?kBT/2), (WFD - WA,rev) (dotted line), 
and (WJE - WArev) (dashed line). The two AG estimates WFD and WJE coincide everywhere to 
within 0.1kBT. Both estimates decrease monotonically with extension, and, by z = 30 nm, 
underestimate the average work by -1.4ksT. (B) Estimation of free energy profile from 
irreversible switching (r = 34 pN/s, green, and 52 pN/s, red). Mean energy differences were 
computed as in (A). Use of the fluctuation-dissipation relation (dotted lines) yields AG to 
within kBT/2 between z = 0 and 18 nm. Beyond z = 18 nm, however, WFD underestimates AG 
substantially. By contrast, application of Jarzynski's equality (dashed lines) recovers AG to 
within experimental error (?kBT/2) from z = 0 to 30 nm. (C to E) Histograms of dissipated 
work values at z = 5, 15, and 25 nm. Dissipated work values for a given switching rate were 
pooled. Blue, 272; green, 119; red, 153 dissipated work values. Solid lines: Gaussian with mean 
and standard deviation of data. 

faster than its slowest relaxation rate, and 
this penalty is largely paid in the central 
extension range (10 < z < 18 nm). The 
kinetic barrier for unfolding the P5abc mol- 
ecule is thus located near or within the P5a 
helix and the A-rich bulge (Fig. 1A). The 
AG estimate from the fluctuation-dissipa- 
tion relation, WFD, performs well until z = 
18 nm but then fails (Fig. 3B, dotted 
curves). However, WJE performs consis- 
tently well over the entire extension range. 
Remarkably, application of Jarzynski's 
equality (Eq. 1) to work trajectories ob- 
tained at the two nonequilibrium switching 
rates yields AG estimates that coincide to 
within 0.3kBT over the entire extension 
range (green versus red dashed curves). 

Moreover, the difference between the non- 
equilibrium WJE's and the reversible work 

WA,rev (solid blue curve) is less than 0.6kBT 
regardless of switching rate. Both criteria 
laid out earlier for successful verification 
of Jarzynski's equality are thus satisfied, 
except near the end of the reaction (z = 30 
nm), where Wj, 52 pN/s underestimates AG 
by 0.6 kBT. 

As shown in Fig. 3B, WED and WJE yield 
different estimates of AG in irreversible condi- 
tions (compare dotted and dashed curves). The 
discrepancy between WED and W:J at 34 and 52 
pN/s suggests that P5abc unfolding occurs far 
from equilibrium at these rates. The fluctuation- 
dissipation relation is applicable only in the 
near-equilibrium limit, where there is a simple 
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Fig. 4. Convergence of N 2010 
the Jarzynski estimate 30 
WJE toward AG as a 40 jc 
function of the num- 
ber of pulling cycles N. 
Switching rate, 34 pN/ 
s. Shading reveals the 1 m 
energy difference be- 
tween successive WJ 
- WA rev profiles. A sin- 
gle molecule was un- -1z 
folded 47 times, and 
WJE was updated with / \-2 
each new work trajec- 20 30 
tory. WA,rev was kept Etension(nm) 
constant at the aver- 
age work over all 47 reversible curves. By N - 40, WJE reveals the ALG profile to within experimental 
error. At the end of the experiment (N = 47), WJE is still converging toward AG; additional work 
trajectories would further improve recovery of AG. 

linear relation between dissipation and thermal 
fluctuation. Jarzynski's equality, however, 
makes no such assumptions and holds even in 
the far-from-equilibrium regime. Violent per- 
turbation of the system, and departure from the 
near-equilibrium regime, should therefore lead 
to discrepancies between WFD and Wj, as are 
indeed observed (Fig. 3B). In the middle and 
end of the switching reaction, the estimation 
error of AG by WjE is one-fourth that of WFD, 
and thus WjE recovers AG to within experimen- 
tal error of - ?kBT/2 over the entire extension 
range. The equilibrium AG for P5abc unfolding 
obtained from application of Eq. 1 to these 
nonequilibrium experiments is 59.6 ? 0.2 kBT 
(29), in excellent agreement with theoretical 
predictions and our earlier equilibrium single- 
molecule measurements (23). 

One feature of WjE helps explain the 
strengths and limitations of Jarzynski's 
equality. For the nonequilibrium experi- 
ments, WjE overestimates W^,eq by < 0.4kBT 
at those extensions where the degree of 
work dissipation is largest (z = 14 nm, Fig. 
3B, green and red dashed lines). Figure 4 
shows the convergence of WJE to WA,rev for 
one data set as the number of curves N 
included in the calculation of WJE is in- 
creased from 1 to 47. The overestimate here 
originates from the. use of Jarzynski's 
equality with a finite (and low) number of 
pulls N. Generally, the more work dissipat- 
ed, the larger N needs to be to converge to 
AG (10). Thus, in the region where most 
work is dissipated, the convergence of WJE 
toward AG is slow and the effect of finite N 
is seen most clearly (Fig. 4, z = 14 nm). 

How is it that a particular form of aver- 
aging (Eq. 1) recovers the equilibrium AG 
of a reaction from nonequilibrium work 
distributions? The answer can be found in 
histograms of the work dissipated during 
the pulling of the molecule at the three 
switching rates (Fig. 3, C to E). The means 
of the distributions for slow switching are 
centered at zero, by design (Fig. 3, C to E, 
blue). The mean and standard deviation of 

the dissipated work distributions increase 
with switching rate r and position z along the 
pulling coordinate (Fig. 3, C to E, green and 
red). The mean work increases with r because 
more work is dissipated as a result of friction 
when the molecule is unfolded more rapidly. 
The standard deviation of the dissipated work 
values increases with r for the following rea- 
son. Before external perturbation, the mole- 
cule is at equilibrium with the thermal bath 
and samples a Boltzmann distribution of en- 
ergy states; at higher switching rates, the 
molecule relaxes less during the reaction, and 
therefore the spread of the irreversible work 
distribution more closely reflects the spread 
of initial energies (30). The standard devia- 
tion thus increases with r and all distributions 
display a tail of negative dissipated work 
values regardless of switching rate (Fig. 3, C 
to E). These smaller work trajectories are 
weighted more by exponential averaging (Eq. 
1). Jarzynski's equality asserts that a balance 
is maintained between the irreversible work 
trajectories with positive dissipated work val- 
ues and those with negative ones such that 
(exp(-3wdiss)) = 1. Therefore, the increases 
in mean and width of the work distributions 
cancel out, regardless of how quickly a reac- 
tion is performed, yielding AG independently 
of the switching rate. Application of Jarzyn- 
ski's equality ultimately reduces to the prob- 
lem of sampling the rare trajectories in the 
lower tails of the work distributions. 
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