
unspliced RNA in the cytoplasm (23, 24) is not 
supported by the observation that the majority 
of these do not accumulate significantly in a 
upf3A strain [suppl. fig. 3 (7)]. The expectation 
based on intronic small nucleolar RNA-pro- 
cessing phenotypes that accumulation of in- 
trons in the dbrlA mutant should be inversely 
related to intron size (25) seems not to hold 
either, most likely because of Dbrlp-indepen- 
dent mechanisms of intron turnover (suppl. fig. 
4). We do not observe correlation between a 
nonconsensus 5' splice site or a U-rich region 
near the 5' splice site and strong dependence on 
Nam8p (26) for splicing in vivo (Suppl. figs. 5 
and 6). We also see no correlation between the 
presence of a U residue upstream of the branch- 
point sequence (27) or the presence of a poly- 
pyrimidine tract before or after the branchpoint 
and strong dependence on Mud2p (suppl. figs. 
7 and 8). These data indicate that using any one 
intron as a reporter may cause the importance of 
a factor to be overemphasized or missed. 
Genomewide analysis allows perturbations of 
splicing to be evaluated on every intron at once, 
in effect using the entire genome as a reporter. 

These studies present the first genome- 
wide view of splicing for any organism. The 
ability to distinguish differently spliced forms 
of RNA by using oligonucleotide microarrays 
opens the way for expression profiling that 
accounts for alternative splicing and splicing 
regulation in higher cells. Estimates suggest 
that 40 to 60% of human genes produce 
alternatively spliced transcripts (28, 29). In a 
growing number of key cases, alternatively 
spliced mRNAs produce proteins of distinct 
or even antagonistic function [e.g. (30)]. Im- 
proved expression profiling technologies 
must resolve changes in alternative splicing 
not simply by estimating exon representation 
[e.g. (31)], but by providing direct evidence 
for exon joining. The results we describe here 
demonstrate that oligonucleotide arrays de- 
signed to detect specific splicing products 
will be key to accurate parallel analysis of 
alternative splicing in higher organisms. 
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phosphorylation and allosteric regulation of 
proteins. The information about specific 
binding of proteins to each other has recently 
grown by an unprecedented amount as a re- 
sult of high-throughput two-hybrid experi- 
ments (1, 2). The production and degradation 
of proteins participating in the interaction 
network is controlled by the genetic regula- 
tory network of the cell, formed by all pairs 
of proteins in which the first protein directly 
regulates the abundance of the second. The 
majority of known cases of such regulation 
happens at the level of transcription, in which 
a transcription factor positively or negatively 
regulates the RNA transcription of the con- 
trolled protein. The large-scale structure of 
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both these networks is characterized by a 
high degree of interconnectedness, where 
most pairs of nodes are linked to each other 
by at least one path. One may wonder how 
such a heavily intertwined and mutually de- 
pendent dynamical system can perform mul- 
tiple functional tasks and still remain stable 
against deleterious perturbations. 

We analyzed the topological properties of 
interaction and transcription regulatory net- 
works in yeast Saccharomyces cerevisiae, 
which at present is perhaps the best charac- 
terized model organism. The interaction net- 
work used in this study consists of 4549 
physical interactions between 3278 yeast pro- 
teins as measured in the most comprehensive 
two-hybrid screen of yeast proteins (2), 
whereas the genetic regulatory network is 
formed by 1289 directed positive or negative 
direct transcriptional regulations within a set 
of 682 proteins as listed in the Yeast Protein 
Database (Incyte Genomics, Palo Alto, CA) 
(3). The protein interaction network is a rep- 
resentative of the broad class of scale-free 
networks (4-6) in which the number of nodes 
with a given number of neighbors (connec- 
tivity) K scales as a power law oc 1/KY. In our 
case the histogram of connectivities can be 
fitted by a power law with y = 2.5 + 0.3 for 
K ranging from 2 to about 100 (7, 8). A small 
part of the protein interaction network, 
formed by proteins known to be localized in 
the nucleus and to interact with at least one 
other nuclear protein, was visualized (Fig. 1). 
One remarkable feature of this graph is the 
abundance of highly connected proteins that 
are mostly connected to those with low con- 
nectivity, and thus well separated from each 
other. 

^^: \\ 

U *I 

Fig. 1. Network of physical interactions be- 
tween nuclear proteins. Here, we show the 
part of the network reported in (2), consist- 
ing of all proteins that are known to be 
localized in the yeast nucleus (3), and which 
interact with at least one other protein in the 
nucleus. This subset consists of 318 interac- 
tions between 329 proteins. Note that most 
neighbors of highly connected nodes have 
rather low connectivity. 

To test for correlations in connectivities of 
nodes for each of the above two networks, we 
calculated the likelihood P(Ko,K1) that two 
proteins with connectivities Ko and K1 are 
connected to each other by a link and com- 
pared it to the same quantity Pr(Ko,Ki) mea- 
sured in a randomized version of the same 
network. In this "null model" network, all 
proteins have exactly the same connectivity 
as in the original one, whereas the choice of 
their interaction partners is totally random. 
The transcription regulatory network is natu- 
rally directed, whereas the network of phys- 
ical interactions among proteins in principle 
lacks directionality. However, for poorly un- 
derstood reasons, the two-hybrid experimen- 
tal data have a significant asymmetry be- 
tween baits and preys, with bait hybrids being 
more likely to be highly connected than their 
prey counterparts. This can be seen, e.g., in 
the fact that average connectivity of baits 
with at least one interaction partner is close to 
3, whereas the same quantity measured for 
preys is only 1.8. Because each reported in- 
teraction involves one bait and one prey pro- 
tein, this asymmetry needs to be taken into 
account when constructing an uncorrelated 
"null" model for the interaction network. For 

this purpose, in our randomization procedure 
we would treat the two-hybrid data as a di- 
rected network with an arrow on each edge 
pointing out from bait to prey hybrid. Ran- 
domized versions of these two networks were 
constructed by randomly reshuffling links, 
while keeping the in- and out-degree of each 
node constant. A convenient numerical algo- 
rithm performing such randomization con- 
sists of first randomly selecting a pair of 
directed edges A--B and C->D. The two 
edges are then rewired in such a way that A 
becomes connected to D, while C connects to 
B. However, in case one or both of these new 
links already exist in the network, this step is 
aborted and a new pair of edges is selected. 
This last restriction prevents the appearance 
of multiple edges connecting the same pair of 
nodes. A repeated application of the above 
rewiring step leads to a randomized version 
of the original network. Multiple sampling of 
randomized networks allowed us to calculate 
both the average expectation and the standard 
deviation for any particular property of the 
random network. 

Correlations in connectivities manifest 
themselves as systematic deviations of the 
ratio P(Ko,K)I/Pr(Ko,Ki) from 1. We calcu- 
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Fig. 2. Correlation profiles of protein interaction and regulatory networks in yeast. (A) The ratio 
P(Ko,K1)/Pr(Ko,K1), where P(KQ,K1) is the probability that a pair of proteins with total numbers of 
interaction partners given by Ko,K1 correspondingly, directly interact with each other in the full set 
of (2), while Pr(Ko,Ki) is the same probability in a randomized version of the same network. (B) The 
same as in (A) but for a protein with the in-degree K.n to be regulated by that with the out-degree 
K u in the transcription regulatory network (3). (C) Z-scores for connectivity correlations from (A): 
Z?Ko,K1) = [P(Ko,K1) - Pr(Ko,K1)]/crr(Ko,K1), where o (Ko,K1) is the standard deviation of Pr (Ko, K1) in 
1000 realizations of a randomized network. (D) As in (C), but for incoming and outgoing links in the 
the transcription regulatory network. To improve statistics, the connectivities in all four panels of 
this figure were logarithmically binned into 2 bins per decade. 
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lated this ratio for interaction (Fig. 2A) and 
regulatory (Fig. 2B) networks, with Ko and 
K1 being the total number of interaction part- 
ners of two interacting proteins (for the inter- 
action network), and out- and in-degrees of 
two nodes connected by a directed edge 0 -> 
1 (for the regulatory network). Thus, by the 
very construction, P(Ko,K1) is symmetric for 
the physical interaction network but not for 
the regulatory network. We also estimated 
the statistical significance Z(Ko,K1) of the 
above deviations in the interaction (Fig. 2C) 
and regulatory (Fig. 2D) networks, by divid- 
ing each observed deviation from the null 
model by the standard deviation in multiple 
realizations of a randomized network. The 
combination of these two plots reveals the 
regions on the Ko-K1 plane, where connec- 
tions between proteins in the real network are 
significantly enhanced or suppressed, com- 
pared to the null model. In particular, red 
regions in the upper left and the lower right 
comrners reflect the tendency of highly con- 
nected nodes (hubs) to associate with nodes 
of low connectivity, while the blue/green re- 
gion in the upper right comrner reflects the 
reduced likelihood that two hub centers are 
directly linked to each other. One should also 
note a prominent feature on the diagonal of 
Fig. 2, A and C, corresponding to an en- 
hanced affinity of proteins with between four 
and nine interaction partners to physically 
interact with each other. This feature can be 
tentatively attributed to the tendency of mem- 
bers of multiprotein complexes to interact 
with other proteins from the same complex. 
The above range of connectivities thus cor- 
responds to a typical number of direct inter- 
action partners of a protein in a complex. 
When we checked for interactions between 
proteins in this range of connectivities, we 
found 39 pairs of interacting proteins to be- 
long to the same complex in a recent high- 

throughput study (9), which is four times 
more than one would expect to find by pure 
chance alone. 

To further quantify and compare corre- 
lation patterns in interaction and regulatory 
networks, we calculated the average con- 
nectivity (K,) of nearest neighbors of a 
node, as a function of its own connectivity 
Ko (Fig. 3A). In order to simplify the com- 
parison between two networks here, we 
characterize each node in the regulatory 
network by its total number of neighbors 
K = Kin + Kout. For both interaction and 
regulatory networks, the average connec- 
tivity (K1) shows a gradual decline with Ko, 
which can be fitted with a power law (K ) xc 
1/Ko0.6 ? 0.1 over approximately two de- 
cades. This observation gives an additional 
credit to the affinity between correlation 
patterns in these two protein networks vis- 
ible in Fig. 2. It was recently found (10) 
that the internet, defined as the set of inter- 
connected routers, in addition to a scale- 
free distribution of node connectivities sim- 
ilar to the protein interaction network, is 
characterized by the same correlation pat- 
tern between connectivities of neighboring 
nodes: (K1) oc 1/Ko05. This extends by one 
step an intriguing similarity in the topology 
of these networks of completely different 
nature. 

For the scale-free physical interaction net- 
work, we also plotted the probability distri- 
bution of the nearest-neighbor connectivity 
K1, measured separately for nodes with small 
connectivity Ko _ 3, and for those with large 
connectivity Ko > 100 (Fig. 3B). In the 
absence of correlations, this conditional prob- 
ability does not depend on Ko and is propor- 
tional to K1/K1i ~ 1/K1 '5. This uncorrelated 
form holds approximately true for neighbors 
of a protein with low connectivity. It is only 
violated at the far tail of the distribution due 

10? 101 102 
Neighbor connectivity K1 

10? 101 102 103 
Connectivity of a node 

Fig. 3. Correlations in connectivities of neighbors. (A) The average connectivity ( K, ) of nearest 
neighbors of proteins with the connectivity Ko in the physical interaction network (triangles) and 
the regulatory network (squares). The solid line is a power law fit, o 1/Ko?06. (B) The probability 
distribution of connectivities K, in the physical interaction network, calculated separately for 
neighbors of proteins with small connectivity K0 ' 3 (squares), and with large connectivity Ko ' 
100 (circles). Lines are power laws Xc 1/K,1 5 (dashed) and cc 1/K,125 (solid). 

to an excess likelihood of it being connected 
to a protein with very high connectivity, as 
was mentioned above. On the other hand, the 
distribution of connectivities K1 of neighbors 
of highly connected proteins scales as x 
1/K12 5 and thus differs from that of lowly 
connected ones by a factor of 1/K1. 

When analyzing molecular networks, one 
should consider possible sources of errors in 
the underlying data. Two-hybrid experiments 
give rise to false positives of two kinds. In 
one case, the interaction between proteins is 
real but it never happens in the course of the 
normal life cycle of the cell, due to spatial or 
temporal separation of participating proteins. 
In another case, an indirect physical interac- 
tion is mediated by one or more unknown 
proteins localized in the yeast nucleus. Con- 
versely, in a high-throughput two-hybrid 
screen, one should expect a sizeable number 
of false negatives. Primarily, a binding may 
not be observed if the conformation of the 
bait or prey heterodimer blocks relevant in- 
teraction sites or if the corresponding het- 
erodimer altogether fails to fold properly. 
Secondly, 391 proteins out of the potential 
5671 baits in (2) were not tested as possible 
bait hybrids, because they were found to ac- 
tivate transcription of the reporter gene in the 
absence of any prey proteins. 

Unlike for the interaction network, our 
data for the genetic regulatory network do not 
come from a single large-scale project. In- 
stead, they derive from a collection of numer- 
ous experiments performed with different ex- 
perimental techniques in different labs. 
Therefore, it is not feasible even to list pos- 
sible sources of errors present in such a di- 
verse data set. In particular, one should worry 
about a hidden anthropomorphic factor 
present in such a network: Some proteins just 
constitute more attractive subjects of research 
and are, therefore, relatively better studied 
than others. One should also note that the 
transcription regulation network is only a 
subset of a larger genetic regulatory network, 
which in addition to transcriptional regulation 
includes translational regulation, RNA edit- 
ing, and so forth. An encouraging sign was 
that when we separately analyzed the set 
representing the current knowledge (3) about 
this later more complete network, consisting 
of 1750 genetic regulations among 848 pro- 
teins, we reproduced all of our empirical 
results for the transcriptional network. 

The observed suppression of connections 
between nearest neighbors of highly connected 
proteins is consistent with compartmentaliza- 
tion and modularity characteristic of control of 
many cellular processes (11). In fact, it suggests 
the picture of functional modules of the cell 
organized around individual hubs. To further 
test the extent of modularity of hubs and their 
immediate neighborhood in each network, we 
selected 15 highest connected nodes. To pro- 
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vide an unbiased sample of hubs from the point 
of view of in- and out-connectivity, half of 
those nodes were selected as the highest out- 
degree hubs (8 baits with Kbait : 90 for the 
interaction network and 7 nodes with Kout> 34 
for the regulatory network), while half were the 
highest in-degree hubs (7 preys with Kprey 20 
for the interaction network and 8 nodes with 
Kout ? 8 for the regulatory network). In agree- 
ment with the correlation properties described 
above, direct connections between hubs were 
significantly suppressed. In the interaction net- 
work, we observed 20 links between different 
hubs in this group, which is significantly below 
56 ? 7.5 links in the randomized network. In 
the transcription regulatory network, there were 
16 links between hubs in real network, as op- 
posed to 35 + 6.5 in its randomized version. 
Not only are direct links between hubs sup- 
pressed in both studied networks, but hubs also 
tend to share fewer of their neighbors with other 
hubs, thereby extending their isolation to the 
level of next-nearest neighbor connections. The 
total number of paths of length 2 between the 
set of 15 hubs in the interaction network is 
equal to 418, whereas in the null model we 
measured this number to be 653 ? 56. Simi- 
larly, for the transcriptional network the number 
of paths of length 2 is equal to 186 in the real 
network, whereas from the null model one ex- 
pects it to be 262 + 30. Since the number of 
paths of length 2 between a pair of proteins is 
equal to the number of their common interac- 
tion partners, one concludes that both the hub 
node itself and its immediate surroundings tend 
to separate from other hubs, reinforcing the 
picture of functional modules clustered around 
individual hubs. 

A further implication of the observed corre- 
lation is in the suppression of the propagation of 
deleterious perturbations over the network. It is 
reasonable to assume that certain perturbations 
such as, e.g., significant changes in the concen- 
tration of a given protein (including its vanish- 
ing altogether in a null-mutant cell) with a 
ceratin probability can affect its first, second, 
and sometimes even more distant neighbors in 
the corresponding network. While the number 
of immediate neighbors of a node is by defini- 
tion equal to its own connectivity Ko, the aver- 
age number of its second neighbors, given by 
Ko ((K1 - l))oK, is sensitive to correlation pat- 
terns of the network. Because highly connected 
nodes serve as powerful amplifiers for the prop- 
agation of deleterious perturbations, it is espe- 
cially important to suppress this propagation 
beyond their immediate neighbors. It was ar- 
gued that scale-free networks in general are 
very vulnerable to attacks aimed at highly con- 
nected nodes (12, 13). The anticorrelation pre- 
sented above implies a reduced branching ratio 
around these nodes and thus provides a certain 
degree of protection against such attacks. This 
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lethality of the mutant cell lacking this protein 
is not particularly strong (8). 

It is feasible that molecular networks in a 
living cell have organized themselves in an 
interaction pattern that is both robust and 
specific. Topologically, the specificity of dif- 
ferent functional modules can be enhanced by 
limiting interactions between hubs and sup- 
pressing the average connectivity of their 
neighbors. We have seen that such a correla- 
tion pattern appears in a similar way in two 
different layers of molecular networks in 
yeast, and thus presumably is a universal 
feature of all molecular networks operating in 
living cells. 
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Partitioning of Lipid-Modified 
Monomeric GFPs into Membrane 

Microdomains of Live Cells 
David A. Zacharias,1' 3t Jonathan D. Violin,1.2* Alexandra C. Newton,1 

Roger Y. Tsienl'3: 

Many proteins associated with the plasma membrane are known to partition 
into submicroscopic sphingolipid- and cholesterol-rich domains called lipid 
rafts, but the determinants dictating this segregation of proteins in the mem- 
brane are poorly understood. We suppressed the tendency of Aequorea fluo- 
rescent proteins to dimerize and targeted these variants to the plasma mem- 
brane using several different types of lipid anchors. Fluorescence resonance 
energy transfer measurements in living cells revealed that acyl but not prenyl 
modifications promote clustering in lipid rafts. Thus the nature of the lipid 
anchor on a protein is sufficient to determine submicroscopic localization within 
the plasma membrane. 
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Subcellular compartmentalization of signal- 
ing increases the specificity and efficiency of 
signal transduction. Caveolae and lipid rafts 
are related microdomains of the plasma mem- 
brane that are enriched in cholesterol, sphin- 
golipids, and many signaling proteins (1, 2). 
Whereas protein-protein interactions main- 
tain many signaling complexes (3, 4), specif- 
ic lipid modifications are believed sufficient 

'Department of Pharmacology, 2Biomedical Sciences 
Graduate Program, and 3Howard Hughes Medical In- 
stitute, University of California, San Diego, La Jolla, 
CA 92093-0647, USA. 

*These authors contributed equally to this work. 
tPresent address: Merck Research Laboratories, 3535 
General Atomics Court, MRLSDB1, San Diego, CA 
92121, USA. 
tTo whom correspondence should be addressed. E- 
mail: rtsien@ucsd.edu 

Subcellular compartmentalization of signal- 
ing increases the specificity and efficiency of 
signal transduction. Caveolae and lipid rafts 
are related microdomains of the plasma mem- 
brane that are enriched in cholesterol, sphin- 
golipids, and many signaling proteins (1, 2). 
Whereas protein-protein interactions main- 
tain many signaling complexes (3, 4), specif- 
ic lipid modifications are believed sufficient 

'Department of Pharmacology, 2Biomedical Sciences 
Graduate Program, and 3Howard Hughes Medical In- 
stitute, University of California, San Diego, La Jolla, 
CA 92093-0647, USA. 

*These authors contributed equally to this work. 
tPresent address: Merck Research Laboratories, 3535 
General Atomics Court, MRLSDB1, San Diego, CA 
92121, USA. 
tTo whom correspondence should be addressed. E- 
mail: rtsien@ucsd.edu 

to sequester proteins in lipid rafts and caveo- 
lae. In particular, acylated proteins may pref- 
erentially partition into these compartments 
(5, 6). Unambiguous observation of these 
small (<100-nm) microdomains in living 
cells is beyond the resolution of visible light 
microscopy; thus destructive assays such as 
cellular fractionation (7) or immunolocaliza- 
tion by electron microscopy (8) have been 
relied upon to study lipid rafts and caveolae. 
We now use fluorescence resonance energy 
transfer (FRET) between nondimerizing cyan 
(CFP) and yellow (YFP) variants of Ae- 
quorea green fluorescent protein (9, 10) to 
show which lipid modifications are sufficient 
to cause such test proteins to aggregate within 
lipid rafts inside living cells. FRET from CFP 
to YFP is advantageous, because it nonde- 
structively detects proximities at nanometer 
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