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We report the design and fabrication of a multilayered macroscopic fiber 
preform and the subsequent drawing and optical characterization of extended 
lengths of omnidirectional dielectric mirror fibers with submicrometer layer 
thickness. A pair of glassy materials with substantially different indices of 
refraction, but with similar thermomechanical properties, was used to construct 
21 layers of alternating refractive index surrounding a tough polymer core. 
Large directional photonic band gaps and high reflection efficiencies compa- 
rable to those of the best metallic reflectors were obtained. Potential appli- 
cations of these fibers include woven fabrics for radiation barriers, spectral 
authentication of cloth, and filters for telecommunications. 
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Polymer fibers are ubiquitous in applications 
such as textile fabrics because of their excel- 
lent mechanical properties and the availabil- 
ity of low-cost, high-volume processing tech- 
niques; however, control over their optical 
properties has so far remained relatively lim- 
ited. Conversely, dielectric mirrors are used 
to precisely control and manipulate light in 
high-performance optical applications, but 
the fabrication of these typically fragile mir- 
rors has been mostly restricted to planar ge- 
ometries and remains costly. We combined 
some of the advantages of each of these 
seemingly dissimilar products in the fabrica- 
tion of polymeric fibers with an exterior mul- 
tilayer dielectric mirror. Thermal processing 
techniques were used to reduce a macroscop- 
ic layered dielectric structure to submicrome- 
ter length scales, creating a fiber having a 
photonic band gap in the mid-infrared (mid- 
IR). Where previous experimental and theo- 
retical work on multilayer fibers has focused 
on the purpose of light transmission through a 
hollow core (1-3), we used multiple dielec- 
tric layers on the exterior of a mirror fiber to 
create the potential for new conformal reflec- 
tor functionality (4). These fibers could be 
incorporated into woven fabrics for precise 
spectral identity verification, such as a unique 
optical bar code; they could also be used as 
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flexible radiation barriers or as filters in tele- 
communications. 

A typical dielectric mirror (also called a 
one-dimensional photonic crystal) is a planar 
stack of dielectric layers made of two alter- 
nating materials with different refractive in- 
dices. Although these mirrors do not possess 
a complete photonic band gap, it has been 
shown that they can be designed to efficiently 
reflect light of all incident angles and polar- 
izations across broad, selectable frequency 
ranges (5, 6). This advance has inspired in- 
terest in the use of omnidirectional dielectric 
mirrors in applications requiring optimal con- 
finement or reflection of light at all external 
angles, such as optical cavities or hollow 
waveguides. The theory and properties of 
planar multilayer dielectric mirrors and om- 
nidirectional reflectors have been explored 
elsewhere (5-10). 

The degree of use of all types of dielectric 
mirrors has been impeded by the cost and com- 
plexity associated with their fabrication and by 
the difficulties associated with depositing these 
mirrors on nonplanar surfaces. Weber and co- 
workers (11) reported the fabrication of free- 
standing, graded-thickness polymeric dielectric 
mirrors with relatively low-refractive-index 
contrast between adjacent birefringent layers. 
The system employed in our work uses amor- 
phous materials having high-refractive-index 
contrast. This has some advantages over a low- 
contrast structure in that the evanescent decay 
lengths and electric field power densities of 
reflected electromagnetic (EM) waves are 
much smaller in the mirror stack, making it 
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possible to achieve high reflectivity with rela- 
tively few layers. The reduced material-light 
interaction brought about by this high-refrac- 
tive-index contrast also reduces material ab- 
sorption. One strategy commonly used to 
achieve high-index contrast has been to fabri- 
cate porous photonic crystal structures with air 
as the low-index component (12). Although this 
approach yields large-index contrast, there re- 
main some limitations associated with the for- 
mation of large interfacial areas prone to con- 
tamination and interconnected structures that 
may be mechanically weak. The materials sys- 
tem we describe here could be used to create 
high-index-contrast photonic crystal structures 
having periodicity along one, two, or three axes 
(13); these structures may be mechanically 
tough and need not maintain high physical con- 
nectivity within either the high- or low-index 
component. 

We employed a three-pronged approach in 
omnidirectional dielectric mirror fiber produc- 
tion, consisting of materials identification, fiber 
preform construction, and fiber draw. Materials 
selection involved the empirical identification 
of a pair of amorphous materials, poly(ether 
sulfone) (PES) and arsenic triselenide (As2Se3), 
which have substantially different refractive in- 
dices, yet similar thermomechanical properties 
within a certain thermal processing window. 
Amorphous or glassy materials lack the abrupt 
change in viscosity with temperature associated 
with crystalline materials at their melting point, 
because of the absence of a first-order thermo- 
dynamic transition when a melt is cooled to the 
glassy state. This continuous viscosity variation 
is one of the most important factors that allow 
inorganic glasses and organic thermoplastics to 
be formed by high-speed thermal processes 
such as drawing, blowing, pressing, and extru- 
sion (14, 15). In order to use similar processes 
in the fabrication of omnidirectional mirror 
structures, the selected materials should exhibit 

REPORTS 

low optical absorption over a common wave- 
length band, very similar viscosities at the pro- 
cessing temperatures of interest, and good ad- 
hesion/wetting without cracking, even when 
subjected to thermal quenching. 

Adhesion and extensional viscosity under 
melt conditions are difficult to measure in gen- 
eral, and the measurement of high-temperature 
surface tension is quite involved (16). Thus, 
limited data on these properties are available, 
and it was necessary to empirically identify 
materials that could be used to draw our mirror 
fibers. Various high-index chalcogenide (S-, 
Se-, and Te-containing) glasses and low-index 
polymers were identified as potential candi- 
dates on the basis of their optical properties and 
overlapping thermal softening regimes. Adhe- 
sion and viscosity matching were tested by 
thermal evaporation of a chalcogenide glass 
layer on top of a polymer film or rod and 
elongation of the coated substrate at elevated 
temperatures. The choice of a high-temperature 
polymer, PES, and a simple chalcogenide glass, 
As2Se3, resulted in excellent thermal co- 
deformation without film cracking or delamina- 
tion. Approximate matching of extensional vis- 
cosity in this manner was also demonstrated 
with As2Se3 and poly(ether imide). The prop- 
erties, processing, and applications of chalco- 
genide glasses have been explored extensively 
elsewhere (17-21). One advantage in choosing 
As2Se3 for this application is that not only is it 
a stable glass, but it is a stoichiometric com- 
pound that can be readily deposited in thin films 
through thermal evaporation or sputtering with- 
out dissociation (17). Additionally, As2Se3 is 
transparent to IR radiation from approximately 
0.8 to 17 p.m and has a refractive index of -2.8 
in the mid-IR (22). PES is a high-performance, 
dimensionally stable thermoplastic with a re- 
fractive index of -1.55 and good transparency 
to EM waves in a range extending from the 
visible regime into the mid-IR (23, 24). 

Fig. 1. Photonic band LightLine 35 Line 
diagram for a one- ~ / 
dimensional photonic 1 j.1 
crystal having a peri- 
odic refractive index 
alternating between 
2.8 and 1.55. Gray re- _ 0.8 
gions represent pro- 
pagating modes with- 
in the structure, and , 

06 
white regions represent - 
evanescent modes. 
Hatched regions rep- ~ 0.4 0.4 
resent photonic band 
gaps where high re- 
flectivity can be ex- U.L 0.2 T 0.2 
pected for external TM 
EM waves over an an- 
gular range extending ... 
from normal to 35? 1.6 1 0.6 0 0.6 1 1.8 
incidence. The shad- 
ed trapezoid repre- Parallel wave vector (kya/2x) 
sents a region of external omnidirectional reflection. TM and TE represent transverse magnetic 
and transverse electric polarized modes, respectively. 

The selected materials were used to con- 
struct a multilayer preform rod, which essen- 
tially is a macroscale version of the final fiber. 
To fabricate the dielectric mirror fiber preform, 
we deposited an As2Se3 film through thermal 
evaporation on either side of a free-standing 
PES film, which was then rolled on top of a 
PES tube substrate, forming a structure with 21 
alternating layers of PES and As2Se3, using 
only four vapor deposition steps (25). The re- 
sulting multilayer fiber preform was subse- 
quently thermomechanically drawn down with 
an optical fiber draw tower (14, 26) into hun- 
dreds of meters of multilayer fiber with precise- 
ly controlled submicrometer layer thickness, 
creating a photonic band gap in the mid-IR. 
Fibers of outer diameters (ODs) varying from 
175 to 500 pxm with a typical standard deviation 
of 10 pIm from target were drawn from the 
same preform to demonstrate adjustment of the 
reflectivity spectra through thermal deforma- 
tion. The spectral position of the photonic band 
gap was controlled by the optical monitoring of 
the OD of the fiber during draw, which was 
later verified by reflectivity measurements on 
single and multiple fibers of different 
diameters. 

In theoretically predicting the spectral 
response of these fibers, it is helpful to cal- 
culate the photonic band structure that corre- 
sponds to an infinite one-dimensional pho- 
tonic crystal (Fig. 1); this allows for the 
analysis of propagating and evanescent 
modes in the structure, corresponding to real 
or imaginary Bloch wave number solutions 
(5-7). The electric or magnetic field vector is 
parallel to the mirror layer interfaces for the 
transverse electric and transverse magnetic 
polarized modes, respectively. The parallel 
wave vector ky is the component of the inci- 
dent EM wave vector that is parallel to the 
layer interfaces. The phase space accessible 
from an external ambient medium is con- 
tained between the light lines (defined by the 
glancing-angle condition o = cky/no, where c 
is the speed of light in a vacuum, and no is the 
refractive index of the ambient medium), and 
the modes between the 35? lines correspond 

Table 1. Calculated and experimental photonic 
band gap positions for fibers drawn to a 400-pum 
OD. Calculated values were obtained with the 
normalized frequency values of the photonic band 
diagram (Fig. 1), together with the bilayer thick- 
ness of a = 0.90 ,um measured through SEM 
imaging. Experimental values were obtained from 
spectral measurements (Fig. 3A). 

Calculated Experimental 
Photonic central central 
band gap wavelength wavelength 

(im) (lm) 

First 3.35 3.4 
Second 1.7 1.65 
Third 1.1 1.1 
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to those sampled experimentally. Axes are 
normalized to the thickness a of one mirror 
bilayer (a period consisting of one high-index 

Fig. 2. Parallel fiber array made 
from 200-jim-OD fibers used to 
obtain reflectivity data present- 
ed in Fig. 3B. Sections of -5-cm 
length were cut from a single 
continuous fiber to make the ar- 
ray. Although As2Se3 is highly 
absorbing in the visible regime, 
some iridescent colors are visible 
to the naked eye. 

Fig. 3. Measured reflectance 
spectra for (A) 400-ixm-OD and 
(B) 200-jxm-OD dielectric mirror 
fibers relative to gold-coated fi- 
bers of the same diameter. A 
single-fiber reflectivity measure- 
ment is shown in (A), whereas 
(B) compares single-fiber reflec- 
tivity to that measured from a 
multifiber array. Simulations 
were performed with the trans- 
fer matrix method. 
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of the fabricated mirror structures is shown in 
Fig. 1. Three photonic band gaps are present 
where high reflectivity is expected within the 
0 to 35? angular range, and the fundamental 
gap contains a region of external omnidirec- 
tional reflectivity. 

Mirror fiber reflectivity was measured from 
both single fibers and parallel fiber arrays (Fig. 
2) with a Nicolet/SpectraTech NicPlan infrared 
microscope and Fourier transform infrared 
spectrometer (Magna 860). The microscope ob- 
jective (SpectraTech x15, Reflachromat) used 
to focus on the fibers had a numerical aperture 
(NA) of 0.58. This resulted in a detected cone 
where the angle of reflection with respect to the 
surface normal of the structure could vary fromi 
normal incidence to -35?, which is determined 
by the NA of the microscope objective (27). As 
a background reference for the reflection mea- 
surements, we used gold-coated PES fibers of 
matching diameters. Dielectric mirror fibers 
drawn to a 400-jum OD exhibited a very strong 
reflection band centered at a wavelength of 3.4 
jim (Fig. 3A). Measured reflectivity spectra 
agree well with planar-mirror transfer matrix 
method simulations [see, for example, (28)], 
where the reflectivity was averaged across the 
aforementioned angular range for both polariza- 
tion modes. Fibers drawn down to a 200-,xm 
OD show a similar strong fundamental reflec- 
tion band centered near 1.7 jim (Fig. 3B). This 
shifting of the primary photonic band gap illus- 
trates the precise tuning of the reflectivity spec- 
tra over wide frequency ranges through thermal 
deformation processing. Strong optical signa- 
tures are measurable from single fibers as small 
as 200 jim in OD. Fiber array measurements, 
simultaneously sampling reflected light from 
multiple fibers, agree well with single-fiber data 
(Fig. 3B). 

These reflectivity results are strongly in- 
dicative of uniform layer thickness control, 
good interlayer adhesion, and low interdiffu- 
sion through multiple thermal treatments. 
This was confirmed by scanning electron mi- 
croscope (SEM) inspection of fiber cross sec- 

Fig. 4. (A to C) SEM micrographs of a 400-jLm-OD fiber cross section the ordering and adhesion within the alternating layers of As2Se3 
embedded in epoxy. The entire fiber cross section is shown in (A), with (bright layers) and PES. Stresses developed during sectioning caused 
mirror structure surrounding the PES core; (B) demonstrates that some cracks in the mounting epoxy that are deflected at the fiber 
most of the fiber exterior is free of substantial defects and that the interface. Fibers from this batch were used in the reflectivity mea- 
mirror structure adheres well to the fiber substrate; and (C) reveals surements recorded in Fig. 3A. 
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tions (Fig. 4). The layer thicknesses observed 
(a = 0.90 pxm for the 400-pum fibers; a = 
0.45 LTm for the 200-1Lm fibers) correspond 
well to the measured reflectivity spectra. The 
fibers have a hole in the center, because of the 
choice of a hollow rod as the preform sub- 
strate, which experienced some nonuniform 
deformation during draw. The rolled-up mir- 
ror structure included a double outer layer of 
PES for mechanical protection, creating a 
noticeable absorption peak in the reflectivity 
spectrum at -3.2 pim (Fig. 3A). 

A combination of spectral and direct im- 
aging data demonstrates excellent agreement 
with the photonic band diagram. Table 1 
summarizes this agreement for the 400-pxm- 
OD fibers by comparing the calculated pho- 
tonic band gap locations shown in Fig. 1, 
together with the SEM-measured period 
spacing of a = 0.90 p.m, to the empirical 
spectral reflection data shown in Fig. 3A. The 
measured gap width (range to midrange ratio) 
of the fundamental gap for the 400-pxm-OD 
fiber is 27%, compared to 29% in the pho- 
tonic band diagram. 

In light of these results, we can evaluate the 
relative importance of various physical proper- 
ties in creating these drawn omnidirectional 
dielectric mirror fibers. The matching of rheo- 
logical behavior in elongation at the draw tem- 
perature is the key factor in our fiber produc- 
tion. At the draw temperature, the materials 
should be fluid enough to elongate without 
sizable stress buildup, yet not so fluid that the 
mirror layers lose their periodicity. Coefficient 
of thermal expansion (CTE) may also play an 
important role in the adhesion and integrity of 
thin films during any thermal quenching proce- 
dure. PES has a linear CTE of 55 X 10-6/C 
(23), whereas As2Se3 has a linear CTE of 25 
X 10-6/C (22). In the mirror fiber geometry 
described here, this CTE mismatch could act to 
strengthen the outer As2Se3 layers by placing 
them in compression as the PES core of the 
fiber cools and contracts well below the glass 
transition of As2Se3. This materials combina- 
tion facilitated the thermal fabrication of high- 
performance dielectric mirrors in a conformal, 
flexible fiber geometry. 
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Lithosphere: Implications for 

Heat Flux 
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Three-dimensional modeling of upper-mantle anelastic structure reveals that 
thermal upwellings associated with the two superplumes, imaged by seismic 
elastic tomography at the base of the mantle, persist through the upper-mantle 
transition zone and are deflected horizontally beneath the lithosphere. This 
explains the unique transverse shear wave isotropy in the central Pacific. We 
infer that the two superplumes may play a major and stable role in supplying 
heat and horizontal flow to the low-viscosity asthenospheric channel, lubri- 
cating plate motions and feeding hot spots. We suggest that more heat may 
be carried through the core-mantle boundary than is accounted for by hot spot 
fluxes alone. 
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Global seismic tomography aims to improve 
our understanding of mantle dynamics by pro- 
viding constraints on three-dimensional (3D) 
temperature and composition with the use of 
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elastic velocities as proxies. Much progress has 
been made in recent years in resolving increas- 
ingly finer details in the 3D distribution of 
elastic velocities from the inversion of seismic 
phase and travel time data (1-3). In particular, 
regions of faster-than-average velocity, associ- 
ated with subduction around the Pacific rim, 
have revealed a variety of behaviors of lithos- 
pheric slabs in the transition zone, some stag- 
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