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mass, size, shape, spin state, and global distribution 
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ovsky model and software [D. Vokrouhlicky, A. Milani, 
S. R. Chesley, Icarus 148, 118 (2000)]. 

22. Our integrations are normally performed in 64-bit 
floating-point arithmetic ("double-precision") using a 
variable order, variable multistep, Adams-Krogh integra- 
tor, with local error tolerances of 10-14 and a maxi- 
mum predictor/corrector order of 14/15. To reveal the 
cumulative machine numerical error in this approach, 
we integrated a reference trajectory using much slower 
but more precise 128-bit arithmetic ("quadruple-preci- 
sion"), with local error tolerances of 10-19 and a max- 
imum 21/22 order predictor/corrector. The quadruple- 
precision trajectory was then differenced with the dou- 
ble-precision trajectory to assess numerical error in the 
faster double-precision integrations. 

23. An asteroid's PIN = ILN8, where L is the orbit 
perimeter length (9.953328 AU for 1950 DA); N = 

(Tm - Te)/p, the map time minus the encounter time, 
divided by the orbit period (the number of orbits 
between the encounter and the 2880 map time); and 
8 = 2tan-'(GMsv-2d-1), the deflection angle due 
to the close approach, where G is the gravitational 
constant, Ms the mass of the two bodies, v their 
relative speed, and d the minimum approach dis- 
tance. The masses of perturbing asteroids were ap- 
proximated by assuming a bulk density of 3 g cm-3 
a diameter (in km) based on the absolute visual 
magnitude H,, an albedo (pv) common for the spec- 
tral type of the object, and the relation log,0 pv= 
6.259 - 2log,Derf- 0.4H, [E. Bowell et al., in Aster- 
oids II, R. P. Binzel, T. Gehrels, M. S. Matthews, Eds. 
(Univ. of Arizona Press, Tucson, AZ, 1989), p. 551]. 

24. Asteroid 10 Hygiea was the most significant per- 
turber other than Ceres, Pallas, and Vesta. Despite an 
average approach distance of 1.0 AU, 42 such Hygeia 
encounters with a mean relative speed of 3.9 km s-' 
cause 19.8% of the total perturbation detected. This 
is 2.7 times the total effect of the next biggest 
perturber, 704 Interamnia. The single greatest per- 
turbation is from a 0.003261-AU approach by 78 
Diana on 5 August 2150. Asteroid 4217 Engelhardt 
approaches 1950 DA most closely, in 2736, at 
0.001723 AU (-0.7 lunar distances), but the cumu- 
lative perturbative effect by 2880 is negligible. 
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25. With an optically determined synodic rotation period 
of 2.1216 ? 0.0001 hours, 1950 DA is one of the 
fastest known rotators among objects that large. See 
also IAU Circular 7735 regarding asteroid 2001 OE84 
[P. Pravec, personal communication, 12 August 2001; 
L. Sarounova, Ondfejov NEO Photometric Program 
(http://sunkl.asu.cas.cz/- ppravec/neo.htm)]. 

26. P. Pravec, A. W. Harris, Icarus 148, 12 (2000). 
27. This geometric albedo is at the more reflective end of 

the range common for asteroids, consistent with the 
diameter from our delay-Doppler shape inversion and 
the H, = 17.0 + 0.6 mean visual magnitude we esti- 
mate. Spectral class has not been determined for 1950 
DA. 

28. The instantaneous acceleration due to solar radiation 
pressure was modeled as d2r/dt2 = (C, m- 1 r I -2)F, 
where r is the Sun-to-Earth position vector, C, is a 
solar flux constant at 1 AU (2.27545 x 10-7 kg AU3 
m-2 day-2), m is the mass of the asteroid, and F is 
a vector of geometric reflectivities (here, the exposed 
half-sphere surface area scaled by a reflectivity factor 
of 1 + pv, acting in the radial direction only). 

29. The DE-405 planetary ephemeris estimate of Earth 
mass Me has a 1r uncertainty of 6 x 10-8 M) [E. M. 
Standish, in Highlights of Astronomy, I. Appenzeller, 
Ed. (Kluwer Academic, Dordrecht, Netherlands, 
1995), pp. 180-184; also at http://ssd.jpl.nasa.gov/ 
iau-comm4]. 

30. We are grateful to V. Negr6n, A. Hine, and the staff 
of the Arecibo Observatory, as well as F. Krogh for his 
valuable insights and suggestions regarding numeri- 
cal integration. Part of this research was conducted at 
JPL, California Institute of Technology (Caltech), un- 
der contract NASA. The Arecibo Observatory is part 
of the National Astronomy and Ionosphere Center, 
which is operated by Cornell University under a 
cooperative agreement with NSF and with support 
from NASA. Astrometric plate reduction work was 
supported by an NSF grant. Some of our Arecibo 
observations were obtained with the Caltech Base- 
band Recorder, whose development and fabrication 
were funded by NSF. 
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Evidence for the Effect of 

Learning on Timing of 

Reproduction in Blue Tits 

Fabrizio Grieco,* Arie J. van Noordwijk, Marcel E. Visser 

We experimentally show that in blue tits (Parus caeruleus) egg-laying date is 
causally linked to experience in the previous year. Females that received ad- 
ditional food in the nestling period in one year laid eggs later in the next year 
compared with the control birds, whatever the degree of synchronization with 
the natural food abundance in the previous year. As a result, they raised their 
brood much later than the peak period of nestling food availability in the next 
year. The response to experience is adaptive for blue tits, which live in het- 
erogeneous habitats where the peak period of food varies, but once settled will 
breed at the same location for life. 
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In birds, the degree of synchrony of the 
breeding cycle with the period of maximum 
food abundance for nestlings is crucial to the 
condition and survival probability of the off- 
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spring (1, 2). Because reproduction starts 
much earlier than the time of maximum food 
requirement of the offspring, we expect birds 
to start reproduction in response to cues that 
predict the time of maximum food abun- 
dance. A number of such cues have been 
suggested, including day length, temperature, 
food abundance at the time of egg produc- 
tion, and phenology of the vegetation (3-5). 
However, all these studies emphasize the im- 
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portance of current environmental factors in 
determining phenotypic plasticity of laying 
date. A study on great tits (Parus major) (6) 
suggested that laying dates were also affected 
by the feeding conditions experienced by the 
females in the previous year, but direct causal 
evidence was lacking. The apparent response 
could be the result of a correlation of an 
unknown factor related to both past experi- 
ence (synchronization with the peak period of 
food availability) and laying date. 

To seek causal evidence for an effect of past 
feeding conditions on laying date, we conduct- 
ed an experiment with blue tits (P. caeruleus) in 
a Netherlands forest. We supplemented half of 
our experimental pairs with insect larvae 
throughout the nestling period (7, 8), whereas 
the other half of the pairs served as a control. 
We provided one half of the estimated food 
amount consumed by blue tit nestlings (9). At 
the same time, we collected caterpillar frass 
during the breeding season (10) and estimated 
caterpillar biomass using the formula of Tinber- 
gen and Dietz (11, 12). We then looked at the 
response of the females that survived and bred 
the following year. In an attempt to remove 
energy and nutrient constraints on egg laying 
(13, 14), we supplemented all blue tits (includ- 
ing those that served as a control in the nestling 
period) with food at the time of egg laying, both 
in the years with experimental food provision- 
ing in the nestling period and those in which the 
response was measured [see supplemental ma- 
terial (15)]. In this way, females would be more 
responsive to the potential environmental cues 
at that time rather than delay laying due to 
resource constraints (3). (Throughout the text, 
we refer to food-supplemented birds as those 
that received food when raising their brood.) 

We used the method described by Nager 
and van Noordwijk (6) to assess the between- 
year change in laying date of individual fe- 
males independent of the change in laying 
date of the neighbors (16). Our main predic- 
tion was that females receiving additional 
food in the nestling period should not change 
laying date in the next year because their 
nestling period was synchronized with the 
peak period of food abundance, whereas con- 
trols, which (in our area) breed too late in 
their first year to be synchronized with the 
natural caterpillar peak, were expected to ad- 
vance their laying date in the second year. 

Supplementing food during the nestling 
phase clearly affected laying date in the next 
year: the food-supplemented females laid 
eggs later compared with the control birds, 
whatever the degree of synchronization with 
the natural food abundance in the previous 
year (Fig. 1; effect of treatment, F,12 

= 

28.79, P = 0.0002 after controlling for de- 
gree of synchronization in the year of exper- 
iment). For food-supplemented birds, which 
were predicted not to change their laying 
date, we found a slight delay of their laying 

date as well as an effect of the degree of 
synchronization with the natural food abun- 
dance. This could be because food was sup- 
plied at an increasing amount until day 10, 
after which the amount remained constant 
and might have been experienced as a late 
food peak. The slight delay in laying date in 
the next year was opposite from expected if 
the supplemented food had advanced laying 
date via an improvement of the nutritional 
status or a reduced work rate of the females 
[see supplemental material (15) for a poten- 
tial indirect effect of food addition on the 
delay of egg laying]. 

Because females that were food-supple- 
mented did not adjust laying date according 
to their synchronization with natural food 
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Fig. 1. Effect of food supplementation on 
change in laying date of individual female blue 
tits from year 1 to year 2, against the synchro- 
nization between their brood and peak cater- 
pillar abundance in year 1 for the Hoge Veluwe 
from 1997 to 1999. The change in laying date 
was corrected for the change between years in 
the common environment by correcting laying 
date of the focal individual relative to neigh- 
bors (16). Open circles and broken line, control 
females; solid circles and solid line, food-sup- 
plemented females. The negative relation be- 
tween past synchronization and change in lay- 
ing date is consistent with the findings of 
Nager and van Noordwijk (6) in the great tit 
(effect of synchronization, F,12 = 13.00 and 
P = 0.004). The degree of synchronization did 
not differ between experimental groups in the 
year of food addition (Table 1). 

abundance, they were expected to be, on 
average, less synchronized than control fe- 
males in the next year. Given that in our 
experiment the food-supplemented birds 
slightly delayed their laying date, they were 
expected to be, on average, too late for the 
natural food peak. In the experimental year, 
the degree of synchronization did not differ 
between food-supplemented and control fe- 
males, but in the following year food-supple- 
mented females were more out of synchrony 
with the caterpillar peak than the controls 
(Table 1 and Fig. 2). Thus, food provisioning 
during the nestling phase led to mistiming of 
breeding the next year. This strongly suggests 
that the synchrony between the timing of the 
brood and the natural food availability expe- 
rienced by the female is involved in the fine- 
tuning of the timing of reproduction in tits in 
an adaptive manner. 

The results of this study may be viewed as 
an aspect of a more general strategy, where 
organisms recalibrate their "decision rule" 
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Fig. 2. Effect of food supplementation on the 
degree of synchronization between tits' breed- 
ing time and caterpillar peak date in the year 
following the experiment against the treatment 
in the experimental year. The dotted line indi- 
cates caterpillar peak date falling in the middle 
of the nestling period. In the three study years, 
most broods were late relative to the caterpil- 
lars (positive values of synchronization). Open 
circles, control females; solid circles, food-sup- 
plemented females. 

Table 1. Degree of synchronization, expressed in days, between blue tits' breeding season and caterpillars 
(16), in the year of the feeding experiment (year 1) and in the following year (year 2). Tests were 
performed on individuals (six controls, seven food-supplemented) that had nestlings in both years. Two 
control nests were excluded from the original data set because in the following year the nests failed 
before hatching, thus synchronization was not assessed. Change was calculated with the use of a paired 
t test (degrees of freedom = n - 1). 

Difference 
Year Control (d) Food-supp. (control vs. 

food-supp.) 

1 5.17 + 5.20 8.07 + 4.69 t ,1=-1.05 
2 4.00 + 3.21 11.36 + 3.93 t 1=-3.65** 
Change t5 = 0.63 t6 = -2.63* 

*P < 0.05. **P < 0.005. 
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according to their past experience. A decision 
rule specifies the trait (laying date, in this 

case) as a function of an estimate of future 
environmental suitability made at the time of 

making the decision. Such a rule may be 

genetically determined, but birds might be 

expected to recalibrate this rule if it appears 
to produce a mismatch between breeding and 
the conditions for feeding the young (17, 18) 
(in this case, a temporal mismatch between 

nestling phase and caterpillar peak date). 
Learning when is best to breed is only 

adaptive when the environment in a certain 

locality carries some information on the en- 
vironment at the time of the next breeding 
event. The shifts in laying date shown in this 

study may be viewed as a mechanism by 
which birds adapt their breeding time to the 
local environmental conditions. This is par- 
ticularly relevant for species such as the blue 
tit that may settle in a wide variety of habi- 

tats, but once settled will breed at that same 
location for the duration of their lives. The 
seven localities on the Hoge Veluwe, for 
which we measured caterpillar biomass pat- 
terns for 1993 to 2000, differed in the peak 
date of caterpillar biomass (effect of locality 
on variation in local peak dates across 8 

years: F7,42 
= 11.0, P < 0.0001 corrected for 

year). This indicates that some sites are con- 

sistently earlier than others, independent of 
the between-year differences. If the best time 
for rearing the offspring (i.e., the caterpillar 
peak date) in a certain locality is consistently 
earlier or later than in other localities, birds 
are expected to benefit from learning. 
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Bile Acid Secreted by Male Sea 

Lamprey That Acts as a Sex 

Pheromone 

Weiming Li,'* Alexander P. Scott,3 Michael J. Siefkes,1 
Honggao Yan,2 Qin Liu,2 Sang-Seon Yun,1 Douglas A. Gage2 

We show that reproductively mature male sea lampreys release a bile acid that 
acts as a potent sex pheromone, inducing preference and searching behavior in 
ovulated female lampreys. The secreted bile acid 7ca,12oa,24-trihydroxy-5a- 
cholan-3-one 24-sulfate was released in much higher amounts relative to 
known vertebrate steroid pheromones and may be secreted through the gills. 
Hence, the male of this fish species signals both its reproductive status and 
location to females by secreting a pheromone that can act over long distances. 
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The sea lamprey, Petromyzon marinus, is an 
ancestral jawless fish and an invasive parasite 
of fishes, particularly in the Laurentian Great 
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Lakes of North America. It migrates into 
streams to spawn in the spring. The males 
arrive earlier than the females (1) and build 
nests in areas where flow rates are 0.5 to 1.5 m 
s-1 (1, 2). It has long been suspected that the 
males release a pheromone to guide the females 
to their nests (3, 4). This type of sex phero- 
mone, capable of inducing spatial orientation of 

conspecifics "downwind," is well established in 
insects (5), but not so in vertebrates, whose 
identified sex pheromones tend to have a small 
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