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We have produced a draft sequence of the rice genome for the most widely 
cultivated subspecies in China, Oryza sativa L. ssp. indica, by whole-genome 
shotgun sequencing. The genome was 466 megabases in size, with an estimated 
46,022 to 55,615 genes. Functional coverage in the assembled sequences was 
92.0%. About 42.2% of the genome was in exact 20-nucleotide oligomer 
repeats, and most of the transposons were in the intergenic regions between 

genes. Although 80.6% of predicted Arabidopsis thaliana genes had a homolog 
in rice, only 49.4% of predicted rice genes had a homolog in A. thaliana. The 
large proportion of rice genes with no recognizable homologs is due to a 

gradient in the GC content of rice coding sequences. 

andjavanica, two other commonly cultivated 
subspecies. We have also produced a low- 
coverage draft sequence for PA64s. A prelim- 
inary assembly and analysis on a subset of 
this sequence was published in the Chinese 
Science Bulletin (21). Our discussion will 
focus largely on the genome landscape of 
rice, how it differs from that of the other 
sequenced plant, A. thaliana, and how both 
plant genomes differ from that of the human. 
We will show that rice genes exhibit a gra- 
dient in GC content, codon usage, and amino 
acid usage. This compositional gradient re- 
flects a unique phenomenon in the evolution- 
ary history of rice, and perhaps all monocot 
plants, but not eudicot plants. As a result, 
about one-half of the predicted rice genes 
have no obvious homolog in A. thaliana, 
whereas the other half is almost a replica of 
the A. thaliana gene set. 

The entire rice genome sequence can be 
downloaded from our Web site at http://btn. 
genomics.org.cn/rice. Following our an- 
nouncement of the rice genome sequence at 
the annual Plant, Animal and Microbe Ge- 
nomes (PAG X) conference, in San Diego, 
during the ensuing period from 14 January to 
2 March 2002, this sequence was download- 
ed 556 times, and the BLAST search facilities 
were used 7008 times by 343 individuals. 
This sequence has also been deposited at the 
DNA Data Bank of Japan/European Molecu- 
lar Biology Laboratory/GenBank under the 
project accession number AAAA00000000. 
The version described in this paper is 
AAAAO1000000. 

Experime,ltal design. The rice genome 
project at the Beijing Genomics Institute has 
been designed in two stages. This is a report 
on stage I, the primary objective of which 
was to generate a draft sequence of rice at 
-4X coverage for 93-11. A similar amount 
of data will eventually be generated for 

Rice is the most important crop for human 
consumption, providing staple food for more 
than half the world's population. The euchro- 
matic portion of the rice genome is estimated 
to be 430 Mb in size (1-3), which is the 
smallest of the cereal crops. It is 3.7 times 
larger than that of A. thaliana (4-6), and 6.7 
times smaller than that of the human (7, 8). 
The well-established protocols for high-effi- 
ciency genetic transformation, widespread 
availability of high-density genetic and phys- 
ical maps (9, 10), and high degrees of synteny 
among cereal genomes (11-15) combine to 
make rice a unique organism for studying the 
physiology, developmental biology, genetics, 
and evolution of plants. The International 
Rice Genome Sequencing Project (IRGSP) 
(16) has already delivered a substantial 
amount of sequence for the japonica (Nip- 

ponbare) subspecies, in bacterial artificial 
chromosome (BAC) and Pi-derived artificial 
chromosome (PAC)-sized contigs. Working 
independently, Monsanto and Syngenta (17, 
18) established proprietary working drafts for 
japonica, in April 2000 and February 2001, 
respectively. The Monsanto sequence has been 
used to assist in the efforts of the IRGSP. 

We are releasing a draft genome sequence 
for rice from 93-11 (19), which is a cultivar 
of Oryza sativa L. ssp. indica, the major rice 
subspecies grown in China and many other 
Asia-Pacific regions. It is the paternal cultivar 
of a super-hybrid rice, Liang-You-Pei-Jiu 
(LYP9), which has 20 to 30% more yield per 
hectare than the other rice crops in cultivation 
(20). The maternal cultivar of LYP9 is Pei-Ai 
64s (PA64s), which has a major background 
of indica and a minor background ofjaponica 
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PA64s, but at present there is only enough 
data to estimate polymorphism rates between 
rice cultivars. The sequence reads were ac- 
quired on high-throughput capillary ma- 
chines (MegaBACE 1000, 10 to 11 runs per 
machine per day). Concurrent with the data 
acquisition, we developed a software pack- 
age (22) to identify and mask repetitive 
sequences and to correctly assemble these 
sequence reads into contigs and scaffolds, 
even though cereal genomes contain far 
more repetitive sequence than many other 
genomes (23, 24). We generated 87,842 
expressed sequence tags (ESTs), against 
our ultimate goal of 1,000,000 ESTs, to 
provide confirmatory evidence for gene 
identification, and for gene expression 
analysis. Comparing the 93-11 contig as- 
semblies with the public data, we generated 
a set of polymorphic markers for genetic 
analysis. In stage II of the project, our 
objective will be to obtain a high-quality 
sequence, fully integrated with the physi- 
cal/genetic maps, and with complete gene 
annotations. 

We used a "whole-genome shotgun" ap- 
proach, as successfully applied to Drosophila 
melanogaster (25) and Homo sapiens (8). 
Our data are complementary to those of the 
IRGSP, which is sequencing Nipponbare, a 
cultivar of the subspecies japonica, with a 
"clone-by-clone" approach. If we assume a 
euchromatic rice genome size of 430 Mb, and 
a Phred Q20 (26, 27) read length of 500 base 
pairs (bp), then 1 X coverage would be equiv- 
alent to 0.86 million sequence reads, or 1 
million reads after the typical success rate of 
80 to 85% is factored in. Shotgun libraries 
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were constructed with a variety of methods 
for clone-insert preparation (28-30), to min- 
imize the likelihood of systematic biases in 
genome representation. A total of 55 plasmid 
libraries were constructed for 93-11 and 
PA64s, with a 2-kb nominal clone-insert size. 
Overall, we prepared 2.75 million plasmid 
DNA samples (31, 32). Sequencing was per- 
formed on both ends of the inserts. By the 21 
October 2001 freeze, there were 4.62 million 
successful reads, indicating an 84% success 
rate. The average Q20 read length was 546 bp. 

Assembling the draft. Genomic studies 
of grasses, especially the cereal crops, have 
indicated that the intergenic regions between 
genes are inhabited by clusters of nested ret- 
rotransposons (23, 24, 33), which compose 
almost half of the rice genome, and substan- 
tially larger fractions of other crop plants like 
Zea mays (maize) and Triticum aestivum 
(wheat). Our sequence assembler software 
was designed to handle highly repetitive ge- 
nomes without having to first characterize the 
repeats in any traditional biological sense. 
The focus was on contiguity at the scaffold 
level, instead of complete assembly across all 
the repeats. However, error probabilities 
would be computed for every base that was 
successfully assembled. 

A typical assembly, based on our soft- 
ware RePS (Repeat-masked Phrap with 
Scaffolding) (22), is shown in Fig. 1. We 
began by computing the number of times 
that any 20-bp sequence (20-nucleotide oli- 
gomer, 20-mer) appeared in the data set. 
Those 20-mers that appeared more often 
than a fixed threshold were flagged as 
mathematically defined repeats (MDRs). 

1 

9.. K .. 
3'9K 41 K ...... 

- masked repeat - assembled contig i I clone-end pair 

Fig. 1. Typical RePS assembly, with 93-11 (indica) contigs aligned to finished BAC sequences from 
GLA (indica) (GenBank accession numbers AL442007 and AL512542). Exact 20-mer repeats are 
indicated by the blue histogram bars, with bar heights proportional to estimated copy number in 
93-11 (indica). Three stages are shown: repeat-masked Phrap, repeat-gap closure, and scaffold 
construction. First, we mask exact the 20-mer repeats and use Phrap to assemble the data on the 
basis of the unique sequence. Second, we use the clone-end pairing information to close smaller 
repeat masked gaps (RMGs) ignored by Phrap because of the masking. However, larger-RMGs and 
gaps due to sampling statistics, Lander-Waterman gaps (LWGs), cannot be so closed. Third, we use 
the clone-end pairing information to construct scaffolds-sets of nonoverlapping contigs linked 
together in the correct order and orientation. A LWG at 0.5 kb is scaffolded over. RMGs at 1.5 and 
2.5 kb are closed, and another at 80 kb is scaffolded over. The RMG between 42 and 65 kb is too 
large to scaffold across given a clone-insert size of 2 kb. 

RePS made no effort to identify biological- 
ly defined repeats (BDRs), because if a 
20-mer was repeated in the MDR sense, it 
would complicate the sequence assembly, 
regardless of its biological context (e.g., 
microsatellites, transposable elements, 
multigene families, recently duplicated 
chromosomal segments, or pseudogenes). 
Instead, it masked the MDRs, so that they 
were invisible to the sequence assembler 
Phrap (34). This reduced the computational 
load by many orders of magnitude, while 
minimizing the likelihood of making a false 
join. However, it also introduced another 
class of gaps, repeat masked gaps (RMGs), 
distinct from the Lander-Waterman gaps 
(LWGs) that are usually encountered in 
sequencing. In a RMG, the gap sequence is 
actually in the data set, but it was not 
usable because it was made invisible to 
Phrap by the masking. In a LWG, the gap 
sequence is missing, as a result of sampling 
statistics (35). Some of the RMGs could be 
closed with the clone-end pairing informa- 
tion, assuming that both clone ends were 
not fully masked. After repeat-gap closure, 
and regardless of the nature of the remain- 
ing gaps, RePS was used to analyze the 
clone-end pairing information to construct 
scaffolds-nonoverlapping contigs linked 
together in the correct order and orienta- 
tion. LWGs were usually small, easy to 
close by polymerase chain reaction. Gaps 
larger than a few kb were usually RMGs 
due to the nested retrotransposons in the 

Table 1. Sequence assembly statistics for 93-11 
(indica). The Q20 read lengths refer to the usable 
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part or tne sequence witn error proDaoiiities less 
than 10-2. Masking 20-mer repeats eliminated 
42.2% of the sequence by length. Some reads 
were partially masked, but 18.7% of reads were 
fully masked. The N50 contig or scaffold sizes 
define that size above which 50% of the assembly 
was found. To estimate the assembled-equivalent 
size of the unused reads, we divided total Q20 

tl ll H lengths by the 4.2X depth of reads in the assem- 
/i II l bled contigs. This resulted in an assembled-equiv- 

65K 67K alent size of 104 Mb, of which 78 Mb was fully 
masked reads. The total genome size was thus 
estimated to be 466 Mb. 

Basic shotgun data 
Total genome size (Mb) 
Number of reads 
Q20 read lengths (bp) 
Shotgun coverage 

Exact 20-nt oligomer repeats 
Length of fraction masked 
No. of fully masked reads 

Sequence assembly 
Total contig size (Mb) 
N50 contig size (kb) 
Total scaffold size (Mb) 
N50 scaffold size (kb) 

Unassembled data 
Fully masked reads (Mb) 
All other reads (Mb) 

466 
3,565,386 

546 
4.2 

42.2% 
18.7% 

361 
6.69 
362 

11.76 

78 
26 
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intergenic regions between genes. Whether 
these gaps should be closed or not remains 
to be resolved. 

Shotgun data for 93-11 (Table 1) and 
PA64s were assembled separately, to allow 
for large differences in their genome se- 
quences. In 93-11, there were 3.57 million 
sequence reads after removal of the ones 
containing mitochondrial, chloroplastic, and 
bacterial sequence. Our RePS assembly 
yielded 127,550 contigs with an N50 size 
(i.e., the size above which 50% of the total 
assembly is found) of 6.69 kb. The total 
contig length was 361 Mb. These contigs 
were linked into 103,044 scaffolds with an 
N50 size of 11.76 kb, or a 1.8-fold increase 
over the initial contigs. The total scaffold 
length was 362 Mb. In contrast, for the PA64s 
data set, we had only 1.05 million sequence 
reads. With such low coverage, the N50 con- 
tig and scaffold sizes were much smaller, at 
1.88 and 1.97 kb, respectively. These statis- 
tics differ slightly from those reported in the 
Chinese Science Bulletin (21), because of 
improvements in the RePS software. Remain- 
ing gaps between scaffolds are probably larg- 
er than the clone-insert size of 2 kb; other- 
wise, we would have been able to bridge 
them. We cannot provide a gap size distribu- 
tion, but in the rice BACs that have been 
sequenced, repeat cluster sizes up to 25 kb 
have been observed. 

The total contig and scaffold lengths fall 
far short of the previously estimated euchro- 
matic genome size of 430 Mb. Where is the 
missing DNA? In the initial phase of the 
RePS assembly, 42.2% of the sequence was 
identified as a MDR and masked. A total of 
18.7% of all the reads were fully masked and 
not immediately usable. Even though some 
were later incorporated into the assembly, 
with the clone-end pairing information, a 
large number of fully masked reads, and 
some partially masked reads, remained un- 
used. To estimate the effective-assembled 
size of the unused reads, we defined an em- 
pirical coverage based on the depth of reads 
in the assembled contigs, 4.2X. The effec- 
tive-assembled size for the unused fully 
masked and partially masked reads was thus 
estimated as 78 and 26 Mb, respectively, 
resulting in a total genome size of 466 Mb. 
That this is larger than the previous estimates 
is reasonable, given that whole-genome shot- 
gun data inevitably contain some amount of 
heterochromatin DNA. 

Quality assessments. We assumed that 
any large cluster of MDRs was an intergenic 
region and that we could safely avoid having 
to assemble across such a region. If so, then 
most of the "functional sequence" that en- 
codes genes, and their immediate regulatory 
elements, should lie in our 361 Mb of assem- 
bled contigs. To confirm that this was indeed 
the case, we gathered all the publicly avail- 
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able sequence-tagged sites (STSs) and full- 
length cDNA sequences, as well as our own 
ESTs, and searched for them in our assem- 
bled contigs, using BLAST (36). Fortunately, 
a dense physical map of STS markers had 
already been established (37) forjaponica. A 
total of 2845 markers were analyzed, and on 
the basis of sequence identity, 91.5% of their 
total length could be found in our contigs. 
Similarly, 24,776 UniGene clusters were as- 
sembled from 87,842 ESTs for 93-11, and 
93.8% of their total length could be found in 
our contigs. Finally, 907 nonredundant 
cDNA sequences were extracted from Gen- 
Bank release 125 (15 August 2001), and 
90.8% of their total length could be found in 
our contigs. Averaged across these three data 
sets, the functional coverage was 92.0%. 

The quality metrics that matter for gene 
identification are (i) contiguity on the length 
scale of a gene, (ii) single-base error proba- 
bility, and (iii) contig assembly accuracy on 
the length scale of a gene. As will be detailed 
in a later section, the mean gene size for rice 
is about 4.5 kb. Considering that our N50 
scaffold size is only 11.76 kb, larger scaffolds 
would reduce the number of genes that are 
split across scaffolds, and this is a key objec- 
tive in stage II of the project. The number 
most often cited is the single-base error prob- 
ability, which the International Human Ge- 
nome Sequencing Consortium (7) deter- 
mined should be 10-4 or better, based on a 
human polymorphisms rate of 10-3. Actual- 
ly, as is detailed in a later section, rice poly- 
morphism rates are closer to 10-2, so an error 
rate of 10-4 is better than needed. On the 
basis of Phrap estimates (26, 27, 34), 94.2, 
90.8, and 83.5% of the 93-11 sequence had an 
error rate of better than 10-2, 10-3, and 

10-4, respectively. However, most of the 
problematic bases were at the ends of the 
contigs. When we restricted this calculation 
to contigs greater than 3 kb and ignored bases 
within 500 bp of the ends, 97.3, 96.1, and 
92.5% of the 93-11 sequence had an error rate 
of better than 10-2, 10-3, and 10-4, respec- 
tively. It is important to bear these error rates 
in mind when comparing two sequences to 
estimate polymorphism rates. 

Assembly accuracy is an often overlooked 
but nevertheless important quality metric. 
When the sequence reads are joined together 
in the wrong order or orientation, some of the 
exons will be arranged in the wrong order or 
orientation. This will confuse any gene-anno- 
tation program. For example, a 2-kb segment 
that is flanked by a pair of inverted repeats 
might be assembled in the wrong orientation. 
Comparison of independently assembled 
BACs would not necessarily detect the mis- 
take, because the problem is due to sequence 
content, not data quality, and the same mis- 
take could be made in both BACs. Compar- 
ison with existing physical or genetic maps 

validate assembly accuracy on the Mb length 
scale, but that is much larger than the size of 
most genes. Clone-end pairing information 
does validate a contig assembly on the kb 
length scale of the genes. However, when the 
clone ends are also used to assemble the 
sequence, they do not qualify as an indepen- 
dent confirmation. To address this problem, 
we aligned cDNA sequences (i.e., experi- 
mentally derived transcripts) with the ge- 
nome sequence. 

We removed obvious redundancies by 
eliminating any cDNA that was more than 
90% contained inside another. Transposon 
sequences identified by RepeatMasker (38), 
generally in the 3'-untranslated region, were 
trimmed off to minimize the number of am- 
biguous hits. Alignments were allowed to 
span multiple contigs. Within any one contig, 
a putative misassembly was flagged whenev- 
er an exon was missing from the middle of 
the chain, in the wrong order, or in the wrong 
orientation. Missing splice sites resulting 
from minor sequencing errors, and partial 
alignments resulting from missing sequences 
at the end of a contig, were not counted. All 
putative misassemblies were validated by vi- 
sual inspection, to ensure that no better align- 
ments could be found. If in the end, the best 
alignment remained problematic, we con- 
cluded that there must have been a misassem- 
bly. One might think that lower quality 
cDNA sequences would contribute to the 
problematic alignments, and that this proce- 
dure would only set an upper bound on the 
number of misassemblies. However, we 
doubt that this is a serious problem. Substi- 
tutional errors might be common in cDNA 
sequences, but they would not trigger our 
detection algorithm. Only exon-sized rear- 
rangements, especially those that change the 
order and orientation, would do so, but such 
rearrangements are rare in cDNA sequences. 

We benchmarked our misassembly detec- 
tion procedure on two of the most recently 
completed model organism genomes: A. 
thaliana, which is of finished quality (4), and 
Drosophila melanogaster, from the Celera 
13X whole-genome-shotgun sequence (25). 
For A. thaliana, we detected problems in 
0.2% of 4804 genes, and for D. melano- 
gaster, we detected problems in 1.1% of 1889 
genes. For 93-11 contigs, we detected prob- 
lems in 1.1% of 907 genes, which was com- 
parable to the D. melanogaster data. 

Compositional gradients. The rice ge- 
nome has compositional properties that dif- 
ferentiate it from the other sequenced plant 
genome, A. thaliana, and introduce unique 
difficulties for genome analysis. Here, we 
show data on exon, intron, and gene sequenc- 
es derived from alignment of cDNAs with 
genomic sequence. Indeed, for Figs. 3 
through 7, all of the gene models were de- 
rived from cDNA alignments, not gene-pre- 
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diction programs. GenBank release 125 (15 
August 2001) was used for the A. thaliana 
figures, and for the rice cDNAs. The rice 
genome sequence was our 93-11 assembly. 
The human cDNA sequence was downloaded 
on 2 March 2001 from NCBI-RefSeq ftp:// 
ncbi.nlm.nih.gov/refseq/H_sapiens and the 
human genome sequence was downloaded on 
27 February 2001 from ftp://ncbi.nlm.nih. 
gov/genomes/H_sapiens, immediately after 
the initial annotation papers. 

Genomic, exon, and intron GC contents. 
The average genomic GC content for pro- 
karyotes and eukaryotes varies widely. It 
ranges from less than 22% in the human 
malaria parasite, Plasmodium falciparum, to 
more than 68% in the large amplicon of 
Halobactrium sp. NRC1 (39). Local hetero- 
geneity in GC content can be enormous, 
ranging from 26 to 65% in the human ge- 
nome alone. In contrast, AG content (purine) 
is homogeneous (40-43), fluctuating by just a 
few percent about a mean of 50%. Composi- 
tional heterogeneity has been debated for 
more than 30 years (44-47). Discussions 
have focused on the characterization of the 
human genome as a mosaic of GC-rich and 
AT-rich "isochores," which are observed in 
warm-blooded vertebrates, but not in cold- 
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Fig. 2. Distributions for genomic GC content in 
A. thaliana, 0. sativa, and H. sapiens, computed 
over a bin size of 500 bp. Note that for bins/ 
10 = 100, the number of bins with that GC 
content is 1000. 
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blooded vertebrates. More recently, an ele- 
vated GC content in the Gramineae (grass) 
genomes was reported, extending perhaps to 
all monocot genomes, but not to eudicot ge- 
nomes (48). It is not known whether or how 
this phenomenon is related to isochores. 

Major differences between sequence con- 
tent in A. thaliana, rice, and human are ob- 
servable even at the simplest level, from dis- 
tributions of genomic GC content. Tradition- 
ally, GC content was computed on a large 
window size, typically in the 100s of kilo- 
bases, to mimic the original Cs2SO4 density 
gradient experiments (49, 50). We have 
found that smaller windows are more infor- 
mative, because when these windows are 
larger than a typical gene size, they obscure 
differences between intergenic DNA and 
genes. We used a 500-bp window size, to 
obtain a smaller size than that of most plant 
genes (Fig. 2). As previously reported (51), 
the A. thaliana distribution displayed a 
"shoulder" on the AT-rich side, which could 
be attributed to the sizable fraction of the 
genome that was in intergenic DNA. The 
primary peak at 0.382 was nearly identical to 
the 0.388 GC content of the average A. thali- 
ana gene. In contrast, no shoulder was ob- 
served in rice. However, a "tail" was apparent 
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on the GC-rich side. The human distribution 
also displayed no shoulder, but a minor tail 
might have been present. To analyze these 
features, we plotted GC content distributions 
for exons and introns (Fig. 3). Rice exons 
exhibited a GC-rich tail, but rice introns did 
not, indicating that the GC-rich tail in the rice 
genomic distribution was primarily due to the 
exons. 

Variation in GC content within genes. The 
key question is whether the increase in exon 
GC content was due to many genes with a 
few GC-rich exons or to a subset of GC-rich 
genes. Equivalently, was most of the varia- 
tion in exon GC content within genes or 
between genes? After the GC contents of 
individual exons and introns were plotted as a 
function of genomic length (i.e., the sum of 
exon and intron lengths), it was apparent that 
most of the variation was within genes (Fig. 
4). Contrary to the expectation that, in the 
human genome, large genes are on average 
more AT-rich than small genes, we found that 
at least one exon of exceptionally high GC 
content could be found in almost every rice 
gene, including the largest ones. Moreover, 
when the GC content of the protein-coding 
regions was plotted as a function of position 
along the direction of transcription, starting 
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many times before becoming inactive. De- transposons (Fig. 7). For the exons < 
spite subsequent degradation of these trans- trons, we used cDNA-to-genomic 
poson sequences, portions should remain in ments. For transposons, we used RepB 
many different places throughout the ge- (59), a database of consensus sequen 
nome. RePS computed the copy number for every known family or subfamily of 

every 20-mer sequence in the genome, indi- posons. In plants, exons and intron 

eating how many times each occurred in the fully accounted for by 20-mers wit] 

genone. We could therefore determine the numbers of less than 10. Transpose 
copy number required to account for all of a quired much higher copy numbers o 

particular sequence data set. These data sets 102 in A. thaliana and 102 to 103 in ric 
would include all exons, introns, and known could legitimately ask if the absence c 
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indicating averaged GC content for exons or introns at that size range. All exon an( 

sequences were derived from cDNA-to-genomic alignments. 

and in- MDR clusters in our rice assemblies was a 

align- confounding factor in the intron analysis. We 
ase 6.6 therefore performed an analysis on introns 
ces for from finished BAC sequences and found no 
f trans- detectable differences. Strikingly, in the hu- 
s were man, extremely large copy numbers of 104 to 
h copy 105 were required to fully account for the 
Dns re- introns, as was observed with the trans- 
f 10 to posons. Human exons, however, were found 
ce. One at the same low copy numbers as in plants. 
)f large The copy number analysis shows that few 

plant transposons are in the introns, and by 
definition, plant transposons must be located in 
the intergenic regions between genes. Con- 
versely, analyses of gene size show that most 
human transposons are in the introns (53). We 
believe that this dichotomy in where the trans- 

posons ended up reflects a fundamental differ- 
ence in plant and vertebrate genomes. The di- 
chotomy is not due to any lack oftransposons in 

plants, because plant genomes contain many 
transposons. At least 24.9% of the rice genome 
was identifiably oftransposon origins, based on 
a weighted average of assembled contigs and 

6 unused reads, but the correct percentage is like- 
ly to be much higher, because the transposon 
databases on which RepeatMasker relied were 
incomplete. A. thaliana, being a more compact 
genome, had a reported transposon fraction of 
10%, although we suspect that this too is an 
underestimate. 

Repetitive sequences. We deal with 
three classes of repeats: simple repeats [e.g., 
(CAG)n], complex repeats (i.e., transposable 

6 elements or TEs), and mathematically de- 
fined repeats (MDRs). Here, we focus on the 
first two classes, which we called biological- 
ly defined repeats (BDRs). As with intron 
and gene sizes, acquisition biases must be 
factored in, so that we do not introduce ad- 
ditional discrepancies among the published 
studies. For example, a survey of 73,000 
sequence-tagged connectors, totaling 48 Mb 
of sequence from japonica (60), found that 

6 63% of identified TEs were retrotransposons 
(e.g., copia and gypsy). However, a survey of 

th color 910 kb of rice genomic sequence (61) found 
d intron that 18.6% of identified TEs were retrotrans- 

posons. Most of the remainder were MITEs, 

Table 2. Simple repeats. Shown are tandem repeats with periods 1 to 4 (mono-, 
di-, tri-, and tetranucleotide) and the totality of repeats with all periods. The 
index n is the number of periodic units. For example, AGTTAGTT is a tetranucle- 

otide of n = 2. We compute mean GC contents of the observed repeats in each 

category. Repeat content is then given as a percentage by length, normalized 
with respect to the data set (assembled contigs, fully masked reads, or cDNAs). 

93-11 assembled contigs 93-11 fully masked reads Full-length cDNAs 

n= 6-11 n > 11 n = 6-11 n > 11 n =6-11 n > 11 

o % of % f % of% of %of 
% GC of % GC of % GC of % GC of % GC f % GC 

data set data set data set data set data set data set 

Mononucleotides 7.63 1.7847 27.65 0.0680 20.34 0.6953 21.02 0.0154 24.08 0.6303 1.31 0.7125 
Dinucleotides 35.77 0.0904 13.08 0.0847 41.86 0.0553 4.38 0.0294 46.85 0.0573 31.11 0.0394 
Trinucleotides 71.79 0.0454 10.08 0.0106 67.20 0.0098 20.81 0.0012 83.05 0.1335 66.67 0.0043 
Tetranucleotides 28.77 0.0072 24.90 0.0032 37.35 0.0020 31.90 0.0010 50.00 0.0018 0.00 0.0000 
All periods 1.9277 0.1665 0.7624 0.0469 0.8229 0.7561 
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or miniature inverted-repeat TEs, which ac- 
counted for 71.6% of identified TEs. Similar- 
ly large discrepancies were encountered in 
analyses of microsatellite distributions using 
mixed data from BAC ends, ESTs, and fin- 
ished BAC/PACs (62). 

For the 93-11 sequence, it is particularly 
important that we analyze those sequence 
reads that were not assembled into contigs. 
Tables 2 and 3 thus summarize repeat con- 
tents in the two largest components: 361 Mb 
of assembled contigs and 78 Mb of unused 
fully masked reads. Weighted averages for 
the entire rice genome were also computed. 
For comparison, we show repeat content in 
907 nonredundant full-length cDNAs from 
GenBank release 125 (15 August 2001). Ab- 
solute numbers are not listed because, with so 
much of the genome in unassembled reads, 
and with so many of the transposons nested 
inside some other transposon, accurate counts 
were not feasible. Results are listed as a 
fraction of total sequence length. 

Simple sequence repeats (SSRs). SSRs are 
particularly useful for developing genetic 
markers. They are believed to vary through 
DNA replication slippage (63-65), and are 
related to genetic instability (66). In Table 2, 
we describe SSR content for two sectors, n = 
6 to 11 units and n > 11 units, to emphasize 
that the number of SSRs dropped substantial- 
ly after 11 units. The SSR content for 93-11 
was 1.7% of the genome, lower than in the 
human, where it was 3% (7). The over- 
whelming majority of rice SSRs were mono- 
nucleotides, primarily (A), or (T)n, and with 
n = 6 to 11. In contrast, for the human, the 
greatest contributions came from dinucleoti- 
des. Notably, trinucleotides with n = 6 to 11 
were a barometer of gene content. The basic 
effect was captured by the ratio of trinucle- 
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otide to dinucleotide content, which was 
2.33, 0.50, and 0.18 in cDNAs, assembled 
contigs, and fully masked reads, respectively. 
As required for a barometer, these numbers 
are well correlated with presumed gene con- 
tent. In addition, the GC content of these 
trinucleotides was high, consistent with the 
high GC content of many rice exons. 

Complex sequence repeats (TEs). Trans- 
posons identified by RepeatMasker (38) were 
assigned into three classes. Class I repeats are 
retrotransposons, primarily Tyl/Copia-like 
and Ty3/Gypsy-like. Class II repeats are DNA 
transposons, including Ac/Ds, En/Spm, Mar- 
iner-like, and Mutator elements. Class III 
repeats are a previously unknown type of 
short DNA transposons called MITEs (67, 
68). The two common examples are Stow- 
away and Tourist. Recently, an active family 
of tourist-like MITEs was identified in maize 
(69). Programs like RepeatMasker identify 
sequences that share at least 50% identity 
with a known TE. Because TEs are under no 
selective constraints after they insert in a 
genome, they tend to diverge from their an- 
cestral sequence, and become unrecognizable 
over a time scale of a hundred million years 
(70). Identifiable repeat content is thus a 
function of TE age and completeness of the 
TE databases. The numbers listed in Table 3 
must therefore be considered underestimates. 

Fully masked reads were composed of 
59% identifiable TEs. Assembled contigs 
were only 16%. Of these TEs, the amount in 
class I and class III repeats was 97 and 1%, 
respectively, for fully masked reads, but 42 
and 40% for assembled contigs. This ex- 
tremely biased distribution is notable, be- 
cause class I repeats reportedly inhabit the 
intergenic regions (23, 24), and class III re- 
peats are found near, although not necessarily 

in, the genes (71). Thus, we had 92.0% func- 
tional coverage despite having only 361 Mb 
in assembled contigs, in a genome of total 
size 466 Mb. The reason class I repeats failed 
to assemble is apparent when one examines 
their mean size. Class III repeats were usually 
smaller than 671 bp, but class I repeats were 
as large as 7 kb. Our ability to close repeat- 
masked-gaps, or RMGs, was limited by the 
clone-insert sizes. For this assembly, the 
clone-insert sizes were only 2 kb, although 
we plan to use larger sizes for the next stage 
of the rice genome project. 

Finally, the TEs in rice cDNAs constitut- 
ed only 1% of the sequence, which is much 
lower than the 4% that was reported for 
human genes (72). Gene-associated TEs, in 
human and other vertebrates, have been pro- 
posed to play crucial roles in creating new 
genes (73) and in changing the regulatory 
circuitry to promote evolution in the host 
genome (74). 

Rice gene annotations. Gradients in GC 
content and codon usage for rice genes create 
special problems in the gene-annotation pro- 
cess (52). Because rice genes have different 
compositional properties at their 5' and 3' 
ends, it is difficult to train a program to 
perform well under all circumstances. Some 
ab initio gene-prediction programs can use 
different codon-usage statistics for different 
genes, on the basis of regional GC content, 
but none use different codon-usage statistics 
at different positions along the same gene. 
Unless the gradient is explicitly modeled, or 
perhaps, codon-usage statistics are aban- 
doned altogether, performance will be subject 
to the vagaries of the training process. With 
this in mind, we set out to survey all of the 
programs trained for rice: FGeneSH (75), 
GeneMark (76), GenScan (77), GlimmerM 

Table 3. Complex repeats. Transposons identified by RepeatMasker are 
assigned to three classes. Each class has a number of families (e.g., 
tourist-like MITEs), and each family has a number of different sub- 
families. The number of subfamilies is listed, as well as their 

total and mean size. Repeat content for each family is given as a 
percentage by length, normalized with respect to the data set (assembled 
contigs, fully masked reads, or cDNAs) or with respect to all identified 
transposons. 

93-11 assembled contigs 93-11 fully masked reads Full-length cDNAs 
Total Mean Number 
(bp) (bp) % of % of % of % of % of % of 

data set repeats data set repeats data set repeats 

Class I LINEs 5 18,997 3,799 1.1905 7.43 0.1318 0.22 0.0257 2.51 
SINEs 7 1,254 179 0.0888 0.55 0.0047 0.01 0.0268 2.61 
gypsy-like 19 105,614 5,559 3.7285 23.28 41.6894 70.35 0.1238 12.07 
copia-like 5 35,151 7,030 1.7175 10.72 15.8506 26.75 0.0869 8.47 
Subtotal 6.7254 41.99 57.6766 97.33 0.2631 25.65 

Class II Ac/Ds TEs 3 1,567 522 0.1099 0.69 0.0145 0.02 0.0000 0.00 
En/Spm TEs 3 5,558 1,853 0.2590 1.62 0.2770 0.47 0.0000 0.00 
MULEs 22 25,800 1,173 2.4500 15.30 0.6378 1.08 0.1807 17.62 
Subtotal 2.8190 17.60 0.9293 1.57 0.1807 17.62 

Class III Stowaway-like 70 16,112 230 2.2370 13.97 0.1247 0.21 0.1910 18.62 
tourist-like 77 19,933 259 3.7405 23.35 0.3228 0.54 0.3451 33.65 
Unknown MITEs 2 1,341 671 0.4950 3.09 0.2080 0.35 0.0458 4.46 
Subtotal 6.4725 40.41 0.6556 1.11 0.5818 56.73 
Grand Total 213 231,327 1,086 16.0169 100.00 59.2615 100.00 1.0255 100.00 
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(78), and RiceHMM (79). Strictly speaking, 
'GenScan was trained for. maize, another 
monocot with GC content gradients. 

Assessment of gene-prediction programs. 
All the gene-prediction programs were pre- 
trained by the authors and tested against our 
cDNA-to-genomic alignments. These com- 
parisons may favor the program that was 
trained on the largest and most recent data 
set, but that information was not available to 
us. Performance was measured at the base 
pair and the exon levels, and then plotted as a 
function of position from 5' to 3' end (Fig. 8). 
Sensitivity is the probability that the actual 
coding region is correctly predicted (1 minus 
false-negative rate). Specificity is the proba- 
bility that the predicted coding region corre- 
sponds to the actual coding region (1 minus 
false-positive rate). Some programs, includ- 
ing GenScan, had sensitivities that were ex- 
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tremely dependent on position, although this 
was not the case when we applied these 
performance metrics to human genes. This 
suggests that the compositional gradients 
were indeed a source of error. That GenScan 
would be affected is significant because, in 
the most recent comparative analysis of hu- 
man genes (80), two of the most successful 
programs were FGeneS (a variant of 
FGeneSH) and GenScan. For rice, however, 
FGeneSH is the most successful program. It 
is not obvious why, although the documenta- 
tion states that FGeneSH places more weight 
on signal terms (e.g., splice sites, start and 
stop codons) than on content terms (i.e., 
codon usage). 

Submitting our 93-11 assembly to the 
FGeneSH Web site returned 75,659 predic- 
tions. However, only 53,398 were complete, 
in the sense that initial and terminal exons 
were both present; 7489 had only an initial 
exon, 11,367 had only a terminal exon, and 
3405 had neither. When we include predic- 
tions without both an initial and terminal 
exon as only half a gene, we obtain an upper 
bound of 64,529 genes. Without correcting 
for sensitivity or specificity, the estimated 
gene count is 53,398 to 64,529. This is sim- 
ilar to the 59,855 genes that we predicted 
from considerations of gene size and repeat 
content. How good are these predictions? We 
have reservations about the absolute value of 
the performance metrics, because FGeneSH 
was probably trained on a gene set with 
considerable overlap to our reference 
cDNAs. These metrics may not tell us how 

well FGeneSH performs for rice genes with 
substantially different compositional proper- 
ties. However, their relative values should be 
interpretable. Namely, base-level specificities 
were better than base-level sensitivities, indi- 
cating that false-negatives are more likely to 
be a problem than false-positives. The pro- 
gram is more likely to miss an exon fragment 
than to label something part of an exon by 
mistake. Sensitivities and specificities were 
much worse at the exon level, implying that 
that the exon-intron boundaries are not pre- 
cisely defined, even when the presence of a 
gene is correctly detected. 

Two pieces of evidence qualify our level 
of confidence in the gene predictions. First, if 
the sensitivity is really as good as suggested, 
then we ought to be able to find most of the 
ESTs in the predicted gene set. We thus 
performed a comparison against the 24,776 
UniGene clusters assembled from our 87,842 
ESTs. The result was that only 77.3% of 
these clusters could be found in the FGeneSH 
predictions. Second, the mean size of the 
predicted coding regions in rice was only 328 
residues, or 73.5% of the predicted coding 
regions in A. thaliana, which averaged 446 
residues. This was the case even though we 
restricted the mean to complete genes with 
initial and terminal exons. Although it is 
possible that rice genes are intrinsically 
smaller than A. thaliana genes, we believe 
that this discrepancy reflects a deeper prob- 
lem that is related to the compositional gra- 
dients, as will be explained below. 

Functional classification of rice genes. 
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Fig. 7. Cumulative copy numbers for exons, 
introns, and known transposons in A. thaliana, 
0. sativa, and H. sapiens. We determined the 
copy number of 20-mers in each genome, and 
then mapped these 20-mers back to exons, 
introns, and known transposons for each ge- 
nome. All exon and intron sequences were de- 
rived from cDNA-to-genomic alignments. The 
analyzed transposons were the consensus se- 
quences for the known families or subfamilies 
of transposons. We show here the fraction of 
each data set that is in 20-mers up to the 
indicated copy numbers. 
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Fig. 8. Performance metrics for ab initio gene-prediction programs, as a function of gene position 
from 5' to 3' end, when compared against cDNA-to-genomic alignments at the same loci. 
Sensitivity is the probability that the coding region is correctly predicted (1 minus false-negative 
rate). Specificity is the probability that the predicted coding region is real (1 minus false-positive 
rate). At the exon level, both splice sites must be correctly predicted for an exon to be counted as 
correct. 
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Although 25,426 genes have been identified 
in A. thaliana, fewer than 10% have been 
documented experimentally (81). Conse- 
quently, functional classification of plant 
genes must rely heavily on homology, 
coupled with a few nonhomology-based 
methods, such as phylogenetic profiling, cor- 
related gene expression, and conserved gene 
orders. Only 27.3 and 36.3% of A. thaliana 
genes have been classified by InterPro (82) 
and Gene Ontology Consortium (83), respec- 
tively. To establish functional classifications 
for rice genes, we performed protein-to-pro- 
tein sequence comparisons against A. thali- 
ana annotations, and adopted classifications 
from the best match to A. thaliana. We con- 
sidered only those 53,398 predictions from 
FGeneSH with initial and terminal exons. 
When multiple hits were found, we selected 
the one with the longest extent of homology. 

We required that at least 25% of the protein 
length be matched. This is a low-threshold 
setting, but as we will explain below, it was 
necessary. In total, 15.9 and 20.4% of rice 
gene predictions were classified by InterPro 
and Gene Ontology Consortium, respective- 
ly. As a percentage of classified genes, the 
predicted gene sets for rice and A. thaliana 
are similarly distributed among different 
functional categories (Fig. 9). We depict 
Gene Ontology Consortium because more 
genes were classified. Tables of predicted 
rice genes and their functional classifications 
(Web supplement 2), as well as InterPro fig- 
ures (Web supplement 3), are available on 
Science Online at www.sciencemag.org/cgi/ 
content/full/296/5565/79/DC1. 

We advise extreme caution in interpreting 
minor differences in functional classification 
between the .predicted gene sets for rice and 

u, a 
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3 

I 

Fig. 9. Functional classification of rice genes, according to Gene Ontology Consortium, and 
assigned by homology to categorized A. thaliana genes. In this ontology, "biological process," 
"cellular location," and "molecular function" are treated as independent attributes. Only 36.3% of 
the 25,426 predicted genes for A. thaliana are classified. For rice, only 20.4% of the 53,398 
complete predictions, with both initial and terminal exons, could be classified. 

Table 4. Polymorphism rates relative to 93-11 (indica). Comparisons were made to finished BAC 
sequences from GLA (indica) and Nipponbare (japonica), as well as to PA64s contigs. Rates were 
computed for repeated and unique regions, in single-base substitutions (SNPs) and insertion-deletions 
(InDels). The numbers given for "unalignable" are a gross underestimate because RePS assemblies omit 
many of the fully masked reads that correspond to the unalignable regions of Fig. 14. 

Nipponbare PA64s GLA (indica) (japonica) 

SNPs in repeated sequence (%) 0.88 0.68 0.65 
InDels in repeated sequence (%) 0.33 0.45 0.27 
SNPs in unique sequence (%) 0.50 0.35 0.50 
InDels in unique sequence (%) 0.14 0.16 0.15 

Repeated sequence fraction (%) 24.1 25.5 22.8 
Unique sequence fraction (%) 74.8 74.3 74.1 
Parts unalignable by BLAST (%) 1.1 0.3 3.1 

A. thaliana. With such a large fraction of the 
genes unclassified, intrinsic uncertainties in 
any classification scheme are amplified into 
artifactual differences. For example, the larg- 
est difference for InterPro was in signal trans- 
duction genes, but no notable difference was 
observed for Gene Ontology Consortium. 
Furthermore, focusing on small differences 
that had a high likelihood of being artifactual 
would distract from the major difference be- 
tween rice and A. thaliana, which as we will 
show next, lies almost entirely in those genes 
with no functional classification. 

A. thaliana comparisons. In general, 
there are two ways to compare gene sets: 
through colinearity and homology. Colinear- 
ity of plant genomes has been studied exten- 
sively (84, 85). For analyses done within a 
plant family, high degrees of colinearity have 
been consistently observed. Across the 
monocot-eudicot divide, with rice and A. 
thaliana as representative species, observed 
degrees of colinearity have been considerably 
lower (86-89). For example, an analysis of a 
340-kb segment on rice chromosome 2 iden- 
tified 56 putative genes (88). Homologs for 
22 (39%) of them were identified in A. thali- 
ana, but were distributed among 5 chromo- 
somal segments, with several small-scale in- 
versions. Another study of 126 rice BACs, 
totaling 20 Mb of sequence and with 3011 
putative genes, identified homologs in A. 
thaliana for 1747 (58%) of these genes (89). 
Typically, each 150-kb BAC mapped to three 
or more chromosomes. Notwithstanding the 
absence of colinearity, the finding that only 
half of the rice genes had a homolog in A. 
thaliana was unexpected. Although these 
analyses were based on predicted genes, 
which have not yet been confirmed, we do 
not believe that this was why so few rice 
genes had a homolog in A. thaliana, because 
a similar analysis was done with 27,294 
unique ESTs from Z. mays (maize), and only 
62% of the open reading frames had a ho- 
molog in A. thaliana (90). 

We focus exclusively on homology, 
rather than orthology, because extensive 
gene duplications in A. thaliana (4, 91) and 
rice make strict one-to-one pairing rela- 
tions, the classic definition for orthology 
(92), difficult to determine. A mere 35% of A. 
thaliana genes are unique and 37.4% belong 
to gene families with more than five mem- 
bers. Segmental duplications larger than 100 
kb in size constitute 58% of the genome, and 
17% of the genes are arranged in tandem 
arrays. In comparisons of rice with A. thali- 
ana, and vice versa, we sought to compute 
the degree of homology in each direction, and 
the extent to which gene duplications in A. 
thaliana are replicated in rice when decom- 
posed by functional classification. Even this 
modest objective was not easy to accomplish, 
because of unexpected complications intro- 
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duced by the compositional gradients in rice. 
Homology between monocots-eudicots. 

The complete set of 25,426 annotated A. 
thaliana genes was downloaded from the 
Arabidopsis Information Resource Web site 
(93) on 29 November 2001. As a control, 
1441 proteins were downloaded from 
SwissProt (94) on the same day. The rice 
genes were restricted to the 53,398 predic- 
tions from FGeneSH with initial and terminal 
exons. We compared protein sequence to all 
six reading frames of the genome sequence 
by means of TblastN (36). Therefore, if the 
homology search failed, it would not be due 
to a gene being missing from the annotation 
of the target genome. The expectation value 
cutoff was set to 10-7. This was not a sensi- 
tive parameter, as most hits were either very 
good or very bad. What mattered was the 
"coverage rule." We projected every hit back 

.to the protein query, and unless a minimum 
fraction of the protein was covered, none of 
the hits were accepted. The hits had to occur 
in the same order in both the query and the 
target, and they all had to be in the same 
orientation. When a homolog spanned more 
than one scaffold, the coverage rule was im- 
posed on each scaffold. From this rule, we 
estimated the number of homologs per gene, 
the extent of the homology, and the percent- 
age amino acid identity (95). 

The asymmetry in the monocot-eudicot 
analysis was striking (Fig. 10). About 80.6% 
of A. thaliana genes had a homolog in rice. 
The mean extent of homology was 80.1% of 
the protein length, and there was 60.0% ami- 
no acid identity. If instead of the full set of 
annotated genes, we had used SwissProt 
genes, 94.9% of the genes would have had a 
homolog, across 86.7% of the protein length 
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and at 72.9% amino acid identity. Presum- 
ably, there were more homologs in the 
SwissProt data because they were more bi- 
ased toward highly conserved proteins. In 
contrast, only 49.4% of predicted rice genes 
had a homolog in A. thaliana. The mean 
extent of homology was 77.8% of the protein 
length, and there was 57.8% amino acid iden- 
tity. For brevity, predicted rice genes with a 
homolog in A. thaliana are called WH genes, 
and those with no homologs are called NH 
genes. We identified two distinct problems in 
this analysis, both attributable to the compo- 
sitional gradients in rice. One was the poor 
quality of the FGeneSH predictions for NH 
genes, and the other was related to the prob- 
ability of identifying a TblastN hit even with 
a perfect gene annotation. We did use ESTs 
to confirm that NH genes were not false 
predictions, but first, we will discuss what we 
believe to be the true problems. 

We had previously observed that rice gene 
predictions were only 73.5% the size of A. 
thaliana gene predictions. This discrepancy 
is not due to the WH half of the rice genes. It 
is due to the NH half, which was on average 
49.4% smaller than the WH half (Fig. 11). To 
analyze the problem, we randomly sampled 
3000 WH genes and 3000 NH genes, and 
applied the analyses of Fig. 3 to Fig. 7. In 
general, WH genes resembled the ".gold stan- 
dard" based on alignment of cDNA to 
genomic sequence. NH genes exhibited a 
number of striking differences. First, the de- 
creased coding region size was clearly due to 
a decrease in the number of exons, not to a 
decrease in the size of the exons. The GC-rich 
tail in NH gene exon distribution was twice 
as large as normal (Fig. 11), suggesting that 
NH genes had more pronounced GC content 
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gradients than either WH genes or those 
cDNAs retrieved from GenBank. It is plausi- 
ble that FGeneSH performance would have 
faltered on NH genes, because NH genes did 
not resemble those genes on which FGeneSH 
was presumably trained. NH genes also had 
twice as many introns as normal in the 200- 
to 2000-bp range (Fig. 11). This would be 
consistent with some of these missing exons 
being combined with their flanking introns. 
The preponderance of anomalous subminimal 
introns would be consistent with exon frag- 
ments being mistakenly called introns. How- 
ever, NH genes could not be transposon se- 
quences, because a 20-mer analysis con- 
firmed that their constituent sequences were 
found in the genome at low copy numbers, 
much like WH and cDNA-derived genes. 

Although we do not entirely ascribe the 
small size of NH genes to a failure by 
FGeneSH to detect exons, it is likely that 
more exons were missed than for WH genes. 
Thus, it would be more difficult to identify a 
homolog for these genes in A. thaliana. How- 
ever, even for experimentally derived gene 
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Fig. 10. Distributions in extent of homology and maximum amino acid identity, for Arabidopsis- 
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protein sequence against all six reading frames of the target genome sequence. 
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dicted coding region. 
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sequences, like cDNAs, the probability of 
identifying a TblastN hit, as a function of the 
position, dropped precipitously near the 5' 
end of the genes (52). Far from the end, the 
probability was about 90%, but within the 
first few hundred bases near the 5' end, the 
probability dropped to less than 50%. This 
was another consequence of the composition- 
al gradients in rice. The magnitude of the 
effect was unexpected. We had thought that 
selective constraints on coding sequences 
would have limited the number of amino acid 
changes, despite pressure from rising GC 
content. However, this was not the case. Ho- 
mology searches were more likely to fail with 
the smaller NH genes because the problem- 
atic region was a larger fraction of their total 
length, and our "coverage rule" required that 
the TblastN hits cover a minimum fraction of 
the coding region. Even in the Arabidopsis- 
to-rice analysis, where the gene predictions 
were more reliable, 83.2%, 80.6%, 69.5%, 
and 48.5% of A. thaliana genes had a ho- 
molog in rice, for coverage rules of 0, 25, 50, 
and 75%. We had to use a relatively low 
coverage rule of 25%. Given the typical pro- 
tein and protein domain sizes of 446 and 100 
residues (96-98), respectively, this was 
equivalent to one protein domain. 

Alternatively, what if the problem were 
due to scaffold size? Half of the NH genes 
were identified in a scaffold that was smaller 
than 7.1 kb. However, as a function of scaf- 
fold size, predicted coding regions for NH 
genes were almost always the same size. NH 
genes found in scaffolds greater than 7.1 kb 
were only 7% larger than those found in 
scaffolds less than 7.1 kb. Scaffold size could 
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not have been responsible for the small size 
of the NH genes. Perhaps NH genes are not 
real genes at all. Are they even expressed? 
Looking back at our EST confirmation anal- 
ysis, we found that 42.9% of WH genes were 
confirmed by a UniGene cluster, compared 
with 15.4% of NH genes. Assuming that all 
WH genes are real, this would imply that 
(15.4/42.9) X 100% = 35.9% of NH genes 
are real. However, if we adjust for their being 
49.4% smaller than normal, attributing this 
size deficit to missed exons, then 72.7% of 
NH genes are real. Certainly, not every NH 
gene is real, but many are. To be conserva- 
tive, we can adjust our gene count estimates 
by a factor of (0.494 + 0.727 X 0.506), 
resulting in a revised gene count of 46,022 to 
55,615. 

Considering the relatively recent diver- 
gence between monocots and eudicots, 145 to 
206 million years ago, it is surprising to find 
so many genes in rice with no homolog in A. 
thaliana. Even more intriguing, this absence 
of homology for NH genes extended to other 
sequenced organisms, including D. melano- 
gaster, Caenorhabditis elegans, Saccharomy- 
ces cerevisiae, and Schizosaccharomyces 
pombe. Although WH genes had a 30.5% 
probability of being homologous to at least 
one gene in one of these organisms, NH 
genes had a 2.4% probability. Hence, the 
major difference between rice and A. thaliana 
gene sets lies in that half of the predicted rice 
gene set with essentially no homologs in any 
organism, and whose functions are largely 
unclassifiable. 

Duplication between monocots-eudicots. 
Having established the major difference be- 
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identity, for Arabidopsis-to-rice and Arabidopsis-to-Arabidopsis comparisons. "Hits per 
proxy for the number of gene homologs, between and within genomes. 

tween the gene sets for rice and A. thaliana, 
we now consider the similarity. We had re- 
ported that 80.6% of the predicted A. thaliana 
genes, and 94.9% of the SwissProt genes, had 
a homolog in rice. The actual number is likely 
to be even higher, because the gradients kept 
us from identifying potential homologs for 
smaller genes. We know that, within A. thali- 
ana, the genes are highly duplicated. Are 
these genes duplicated in the same manner 
when mapped to rice? As a proxy for the 
number of gene homologs within and be- 
tween genomes, we used the "hits per gene," 
as defined in the notes (95). Considering that, 
in the Arabidopsis-to-rice comparison, we 
used a low coverage rule of 25% to compen- 
sate for the gradients, it was inevitable that 
we would experience more difficulty than 
usual in distinguishing between duplicated 
domains and duplicated genes. Thus, the 
number of hits per gene is an overestimate of 
the number of gene homologs. 

Comparing Arabidopsis-to-Arabidopsis 
(A2A), the mean and median hits per gene were 
38.2 and 6.0, similar to the mean and median of 
33.4 and 5.0 that we observed comparing Ara- 
bidopsis-to-rice (A2R) (Fig. 12). That the A2R 
numbers would be slightly smaller makes 
sense, given the 145 to 206 million years of 
divergence. We further note that the means 
were large only because of a few outliers, some 
with up to 1000 hits. The identity of these 
outliers included protein kinase, cytochrome 
P450, putative disease resistance, and many 
"unknown" genes. It is difficult to draw any 
conclusions about the last category, but the 
others are highly duplicated gene families, 
which confirms that these outliers were not 
computational artifacts. The maximum amino 
acid identity was independent of the number of 
hits, but the minimum amino acid identity de- 
creased with the number of hits, which would 
be consistent with an increasing occurrence of 
hits to ever larger families of related but diver- 
gent genes. Although the number of hits was 
dependent on the functional classification, it 
was similarly distributed among the different 
functional categories for A2R and A2A (Fig. 
13). Therefore, not only was it possible to iden- 
tify a homolog in rice for almost every A. 
thaliana gene, but the patterns of gene duplica- 
tion in one were largely replicated in the other. 

The most parsimonious explanation is that 
the rice gene set is essentially a "superset" of 
the A. thaliana gene set. However, we are 
unable to say how many of these additional 
genes that are unique to rice are functionally 
novel, or merely unrecognizable, because of 
gradients in rice amino acid usage. It does 
seem unlikely that so many novel genes 

25+ would arise within only 145 to 206 million 
years, and therefore, we suspect that a mas- 

3mino acid sive duplication event (or a series of duplica- 
gene" is a tion events) occurred, after which many of 

the rice genes were rendered unrecognizable 
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by compositional gradients. Some may have 
been inactivated, and now exist only as pseu- 
dogenes. However, until we can compensate 
for the confounding effects of compositional 
gradients, we cannot explore the extent to 
which rice (99) and many other plants, in- 
cluding A. thaliana, are hybrid (100) or al- 
lopolyploid (101, 102) in origin. 

Rice polymorphisms. Differences be- 
tween subspecies or cultivars of rice must be 
described at two levels, gross and nucleotide. 
At the gross level, we found kilobase-sized 
regions of high similarity interspersed with 
kilobase-sized regions of no similarity. One 
such example is shown in Fig. 14, which was 
based on a comparison of two overlapping 
BACs from indica and japonica. Every un- 
alignable region coincided with a cluster of 
MDRs, traceable to length differences of 0.7 
to 25 kb between the two source sequences, 
distributed in almost equal proportions be- 
tween insertions and deletions. To the extent 
that BDRs could be identified, in roughly half 
of the unalignable regions, they belong to the 
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class of nested retrotransposons that inhabit 
the intergenic regions between genes. This is 
another confirmation of the observation that 
genome sizes change rapidly in grasses (103). 
On the basis of the available 259 kb of over- 
lapping finished BAC sequences, from Nip- 
ponbare (japonica) and GLA (indica), all on 
rice chromosome 4, we would estimate that 
16% of the indica and japonica genome is 
unalignable by this definition. 

At the nucleotide level, excluding the un- 
alignable regions, we define polymorphism 
rates for repeated and unique sequence, par- 
titioned in single-base substitutions (single- 
nucleotide polymorphisms, SNPs) and inser- 
tion-deletion polymorphisms (InDels). By re- 
peated sequence, we mean MDRs. Three dif- 
ferent comparisons are shown in Table 4. 
Two are based on the alignment of 93-11 
contigs to finished BAC sequences from Nip- 
ponbare (japonica) and GLA (indica), total- 
ing 11.8 and 0.9 Mb, respectively. The other 
is a comparison of 93-11 and PA64s contigs. 
One might question the accuracy of a poly- 
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morphism rate based on rough draft se- 
quence, particularly the low-coverage PA64s 
sequence. However, as we noted in our "qual- 
ity assessments" section, most of the errors 
are in the small contigs and at the ends of the 
contigs. Thus, we restricted this analysis to 
contigs larger than 3 kb, with 500 bp trimmed 
off both ends. Overall, there was twice as 
much variation in the repeated regions as in 
the unique regions. Substitution rates were 
two to three times as large as InDel rates. 
Remarkably, there was very little difference 
among the three pairwise comparisons. For 
93-11 to PA64s, averaged over repeated and 
unique regions, the SNP and InDel rates were 
0.43 and 0.23%, respectively. Combining the 
SNP and InDel rates, we obtained an overall 
rate of 0.67%. Although the numbers are not 
exactly comparable, the measured polymor- 
phism rate in maize was 0.96% (104). 

SNPs are useful in genetic mapping (105), 
and are either directly applicable to pheno- 
types or indirectly applicable through linkage 
and association studies. Polymorphisms in 
the unique regions are particularly useful be- 
cause, unlike those in the repeated regions, 
they are more reliably genotyped with exist- 
ing high-throughput technologies, which al- 
ways involve some sort of hybridization step. 
We expect that genome-wide SNP mapping 
in plants (106) will become more popular as 
new technologies become available, especial- 
ly as some are customized for plants (107). 

Concluding remarks. In the initial anno- 
tation of the human genome (7, 8), alternative 
splicing was proposed as a method by which 
protein diversity could be generated from the 
surprisingly small number of genes that were 
identified. The idea that there is extensive 
alternative splicing in human genes has been 
supported by analyses of EST data (108- 
112). Alternative splicing is often associated 
with the exon recognition model (113) of 
pre-mRNA splicing. Exon recognition is fa- 
cilitated by exonic splicing enhancers- 
short, degenerate sequences located in the 
exons that are recognized by a multitude of 
RNA binding factors (114, 115). Because it is 
the exons that are recognized by the splicing 
machinery, the intron sequence content is less 
critical, and transposon insertions into the 
intron are more readily tolerated. Thus, the 
preponderance of large transposons-filled in- 
trons in the human genome is consistent with 
extensive alternative splicing. 

The presence of relatively few trans- 
posons inside plant introns suggests that exon 
recognition is not a common process for plant 
genes. Indeed, exonic splicing enhancers 
have yet to be identified in plants (116). The 
corollary is that there should be relatively 
little alternative splicing in plant genes. Anal- 
ysis of the EST data confirms that A. thaliana 
has substantially less alternative splicing than 
vertebrates or invertebrates (117). However, 
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protein diversity must be generated for the 
organism to evolve. Our analysis has demon- 
strated extensive gene duplications in rice 
and A. thaliana, which are highly correlated 
with each other when decomposed by func- 
tional classification. The conclusion is that 
protein diversity in plants is generated pri- 
marily through gene duplications, whereas in 
vertebrates, it is generated through gene du- 
plications and alternative splicing. This 
would explain why rice has so many genes. 
However, as a method of generating protein 
diversity, gene duplications come at the cost 
of an increase in transcriptional noise (118). 
Perhaps, at some level of complexity, alter- 
native splicing becomes preferred. 

Looking to the future, we intend to improve 
our draft sequence by adding more reads from 
large-insert clones, filling any gaps that are 
likely to contain genes, and integrating the re- 
sultant sequence with existing physical and ge- 
netic maps. The large-insert clones are neces- 
sary to correctly assemble across the large re- 
peat clusters that are sprinkled throughout the 
rice genome. Until then, the BAC-end sequenc- 
es (119) may not be useful because they are too 
large to bridge adjacent contigs, and instead 
skip intervening contigs, resulting in a morass 
of interleaving scaffolds. One should also be 
wary of large-scale differences between indica 
and japonica. In any event, the final assembly 
will be made freely available to the research 
community. We will then apply the experiences 
gained from the rice genome project to other 
agriculturally important crops, including Z 
mays (maize) and T. aestivum (wheat). 
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Cereal crops constitute more than 60% of 
total worldwide agricultural production (1), 
and rice, wheat, and maize are the three most 
important cereals. More than 500 million tons 
of each are produced annually worldwide; per 
capita consumption averages as high as 1.5 
kg per day (2). Most rice grown is consumed 
directly by humans, and about one-third of 
the population depends on rice for more than 
50% of caloric intake (3). 

The cereals have been evolving indepen- 
dently from a common ancestral species for 
50 to 70 million years (4), but despite this 
long period of independent evolution, cereal 
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tion. Comparisons of the physical and genetic 
maps of the grass genomes show conserva- 
tion of gene order and orientation, or synteny 
(5-7). Despite gene similarity and genome 
synteny, cereal genome sizes vary consider- 
ably. The genomes of sorghum, maize, bar- 
ley, and wheat are estimated at 1000, 3000, 
5000, and 16,000 megabase pairs (Mbp), re- 
spectively. Rice has a much smaller genome, 
estimated at 420 Mbp. The small genome and 
predicted high gene density of rice make it an 
attractive target for cereal gene discovery 
efforts and genome sequence analysis. 

Over the past several years, selected re- 
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have been sequenced. The International Rice 
Genome Sequencing Project (IRGSP) was 
organized to achieve >99.99% accurate se- 
quence using a mapped clone sequencing 
strategy (8). In addition, expressed gene se- 
quencing has been actively pursued. More 
than 104,000 expressed sequence tags (ESTs) 
from a variety of rice tissues have been en- 
tered into the EST database (9). Other rice 
genome sequencing projects have been re- 
ported by Monsanto Co. (10) and by the 
Beijing Genomics Institute (11). 

The two major groups of flowering plants, 
monocots and dicots, diverged 200 million 
years ago (12). In late 2000, the 125-Mbp 
genome of the dicot model plant Arabidopsis 
thaliana was reported (13-15). Similar high- 
accuracy sequencing projects of important 
cereals would be expensive and slow because 
their genomes are so large. Recent improve- 
ments in automated DNA sequencing have 
made whole-genome shotgun sequencing an 
attractive approach for gene discovery in both 
small and large genomes (16-18). Here, we 
describe the random-fragment shotgun se- 
quencing of Oryza sativa L. ssp. japonica 
(cv. Nipponbare) to discover rice genes, mo- 
lecular markers for breeding, and mapped 
sequences for the association of candidate 
genes and the traits they control. Also report- 
ed are the linkages of sequence assemblies to 
rice bacterial artificial chromosome (BAC) 
end sequences and fingerprints (19-22), an- 
choring of the physical and genetic maps, and 
the syntenic relationship between rice and 
other plants. The finding that most cereal 
genes have strong rice homologs suggests 
that the rice genome will be useful as a 
foundation for sequencing the genomes of 
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The genome of the japonica subspecies of rice, an important cereal and model 
monocot, was sequenced and assembled by whole-genome shotgun sequenc- 
ing. The assembled sequence covers 93% of the 420-megabase genome. Gene 
predictions on the assembled sequence suggest that the genome contains 
32,000 to 50,000 genes. Homologs of 98% of the known maize, wheat, and 
barley proteins are found in rice. Synteny and gene homology between rice and 
the other cereal genomes are extensive, whereas synteny with Arabidopsis is 
limited. Assignment of candidate rice orthologs to Arabidopsis genes is possible 
in many cases. The rice genome sequence provides a foundation for the im- 
provement of cereals, our most important crops. 

A Draft Sequence of the Rice 

Genome (Oryza sativa L. ssp. 

japonica) 
Stephen A. Goff,'* Darrell Ricke,1 Tien-Hung Lan,' 

Gernot Presting,1 Ronglin Wang,1 Molly Dunn,1 
Jane Glazebrook,1 Alien Sessions,1 Paul Oeller,1 Hemant Varma,1 
David Hadley,1 Don Hutchison,1 Chris Martin,1 Fumiaki Katagiri,' 

B. Markus Lange,1 Todd Moughamer,l Yu Xia,1 Paul Budworth,1 
Jingping Zhong,1 Trini Miguel,1 Uta Paszkowski,1 Shiping Zhang,1 

Michelle Colbert,l Wei-lin Sun,l Lili Chen,1 Bret Cooper,1 
Sylvia Park,1 Todd Charles Wood,2 Long Mao,3 Peter Quail,4 

Rod Wing,5 Ralph Dean,5 Yeisoo Yu,5 Andrey Zharkikh,6 
Richard Shen,6t Sudhir Sahasrabudhe,6 Alun Thomas,6 

Rob Cannings,6 Alexander Gutin,6 Dmitry Pruss,6 Julia Reid,6 
Sean Tavtigian,6 Jeff Mitchell,6 Glenn Eldredge,6 Terri Scholl,6 

Rose Mary Miller,6 Satish Bhatnagar,6 Nils Adey,6 
Todd Rubano,6t Nadeem Tusneem,6 Rosann Robinson,6 
Jane Feldhaus,6 Teresita Macalma,6 Arnold Oliphant,6t 

Steven Briggs1 

The genome of the japonica subspecies of rice, an important cereal and model 
monocot, was sequenced and assembled by whole-genome shotgun sequenc- 
ing. The assembled sequence covers 93% of the 420-megabase genome. Gene 
predictions on the assembled sequence suggest that the genome contains 
32,000 to 50,000 genes. Homologs of 98% of the known maize, wheat, and 
barley proteins are found in rice. Synteny and gene homology between rice and 
the other cereal genomes are extensive, whereas synteny with Arabidopsis is 
limited. Assignment of candidate rice orthologs to Arabidopsis genes is possible 
in many cases. The rice genome sequence provides a foundation for the im- 
provement of cereals, our most important crops. 

92 92 


	Cit r318_c334: 
	Cit r295_c307: 
	Cit r298_c310: 
	Cit r259_c268: 
	Cit r285_c296: 
	Cit r249_c257: 
	Cit r230_c235: 
	Cit r294_c306: 
	Cit r233_c238: 
	Cit r303_c316: 
	Cit r228_c233: 
	Cit r337_c354: 


