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are based on data sets that include neurons from both 
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the care and use of laboratory animals. Bilateral record- 
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recording sites on the anterior bank of the superior 
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imaging with selected electrodes in place. MSTd neu- 
rons were identified by physiologic criteria: large recep- 
tive fields (>20?x 20?), which included the fovea with 
direction-selective responses that prefer large moving 
patterns rather than moving bars or spots (7, 2, 34). 
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Selective estrogen receptor modulators (SERMs) mimic estrogen action in cer- 
tain tissues while opposing it in others. The therapeutic effectiveness of SERMs 
such as tamoxifen and raloxifene in breast cancer depends on their antiestro- 
genic activity. In the uterus, however, tamoxifen is estrogenic. Here, we show 
that both tamoxifen and raloxifene induce the recruitment of corepressors to 
target gene promoters in mammary cells. In endometrial cells, tamoxifen, but 
not raloxifene, acts like estrogen by stimulating the recruitment of coactivators 
to a subset of genes. The estrogen-like activity of tamoxifen in the uterus 
requires a high level of steroid receptor coactivator 1 (SRC-1) expression. Thus 
cell type- and promoter-specific differences in coregulator recruitment deter- 
mine the cellular response to SERMs. 
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mediated gene transcription. Tamoxifen is an 
effective treatment for all stages of hormone- 
responsive breast cancer and can prevent 
breast cancer in high-risk women (1). How- 
ever, tamoxifen has partial estrogenic activity 
in the uterus and is associated with an in- 
creased incidence of endometrial hyperplasia 
and cancer. Raloxifene, approved for the pre- 
vention and treatment of osteoporosis in post- 
menopausal women, also appears to prevent 
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breast cancer, but it does not increase the 
incidence of endometrial cancer. The Nation- 
al Cancer Institute supported "Study of Ta- 
moxifen and Raloxifene" (STAR Trial) is 
currently being conducted to compare the 
safety and effectiveness of these two agents 
for the prevention of breast cancer in post- 
menopausal women (2). 

The molecular mechanism underlying the 
tissue-specificity of SERM action is not 
clear. The crystal structures of the liganded 
ER hormone-binding domain (HBD) indicate 
that both tamoxifen and raloxifene can act as 
ER antagonists by competing with estradiol 
(E2) for binding and by inducing conforma- 
tional changes that block the interaction of 
ER with coactivator proteins (3, 4). However, 
this does not explain how SERMs act as 
agonists or the differences in the spectrum of 
activity among various SERMs. 

Estrogen receptor can regulate gene tran- 
scription either by binding directly to the pro- 
moter of target genes or by binding indirectly 
through a mechanism involving other transcrip- 
tion factors such as Spl and AP1. Genes regu- 
lated through direct ER binding, such as CATD 
(encoding cathepsin D) (5) and EBAG9 (encod- 
ing ER-binding fragment-associated antigen 9) 
(6, 7), typically harbor an estrogen responsive 
element (ERE) with a consensus sequence of 
5'-GGTCAnnnTGACC-3' in their promoters. 
Genes regulated by binding ER indirectly in- 
clude c-Myc (8) and insulin-like growth factor-I 
(IGF-I) (9), whose promoters do not contain a 
classical ERE. 

We examined transcriptional responses to 
tamoxifen and raloxifene in the mammary car- 
cinoma cell line MCF-7 and the endometrial 
carcinoma cell line Ishikawa. In both cell types, 
estradiol (E2) induced the expression of both 
the directly bound ER target genes CATD and 
EBAG9 and the indirectly bound target genes 
c-Myc and IGF-I (Fig. 1). Neither tamoxifen 
nor raloxifene stimulated the expression of 
CATD or EBAG9 in either MCF-7 or Ishikawa 
cells (Fig. 1). It is noteworthy, however, that in 
Ishikawa cells, but not in MCF-7 cells, tamox- 
ifen, but not raloxifene, induced the expression 
c-Myc and IGF-I, whose promoters do not con- 
tain a classical ERE. Similar tissue-specific re- 
sults were also obtained in another endometrial 
carcinoma cell line ECC-1 and another mam- 
mary carcinoma cell line T47-D (10). These 
observations suggest that promoter context is 
one of the determinants for tissue-specific ac- 
tivities of tamoxifen. 

Estrogen receptor-mediated transcription- 
al activation is associated with the recruit- 
ment of coactivators, such as AIB1, GRIP1, 
SRC-1, CBP, p300, and pCAF, and subse- 
quent histone acetylation (11-14). In con- 
trast, antagonist-liganded ER is able to recruit 
corepressors (15-18). Previously, we showed 
in MCF-7 breast cancer cells that, when 
bound by tamoxifen, ER recruits the core- 

pressors NCoR and SMRT and a subset of 
histone deacetylases (HDACs) to target pro- 
moters (18). Further examination of the re- 
cruitment of ER coregulators to target gene 
promoters by chromatin immunoprecipitation 
(ChIP) revealed that, in MCF-7 cells as well 
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raloxifene induce the recruitment of corepres- 
sors and HDACs to the CATD promoter (Fig. 
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MCF-7 cells (A) or Ishikawa cells 
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Fig. 2. Coregulator recruitment on ER target gene promoters. MCF-7 cells or Ishikawa cells were 
grown in phenol red-free DMEM supplemented with 5% charcoal-dextran-stripped FBS for at least 
3 days and left untreated (C) or treated with 100 nM of E2 (E), 1 pLM of 4-hydroxytamoxifen (T), 
or 1 LM of raloxifene (R) for 45 min. ChIP assays (18) were performed using specific antibodies 
against (A) NCoR, SMRT, and HDAC4; and HDAC2 (Santa Cruz Biotechnology, Santa Cruz, CA); and 
(B) ERa (Ab-10, NeoMarkers, Fremont, CA); SRC-1 (a mouse monoclonal); GRIP1 (rabbit poly- 
clonal); AIB1 (affinity-purified rabbit polyclonal); CBP (mouse monoclonal AC26); and acetylated 
histones (AcH) (Upstate Biotechnology, Lake Placid, NY). 
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pressor complex, tamoxifen, but not ralox- 
ifene, induced the recruitment of a coactiva- 
tor complex including SRC-1, AIB1, and 
CBP to the c-Myc promoter (Fig. 2B, upper 
panels, lanes 7, 15, 19). Tamoxifen-stimulat- 
ed coactivator recruitment was accompanied 
by histone acetylation (Fig. 2B, upper panels, 
lane 23) consistent with the current model of 
gene activation by nuclear receptors. Tamox- 
ifen-induced coactivator recruitment to the 
c-Myc promoter was also detected in ECC-1 
cells and to the IGF-I promoter in both en- 
dometrial cancer cell lines (10). 

As ER regulates the rate of gene transcrip- 
tion through its association with coregulators, 
the overall balance of the relative expression 
levels of coactivators and corepressors may be 
an important determinant of the tissue-specific- 
ity of SERMs. Examination of the expression 
levels of ERa and a variety of coregulators 
indicated similar levels of expression in MCF-7 
and Ishikawa cells with the exception of SRC-1 
(Fig. 3A), whose expression is low in MCF-7 
compared with that in Ishikawa cells. The high 
level of SRC-1 expression in endometrial cells 
as compared with mammary cells was con- 
firmed in several different cell lines (10). To 
investigate whether this difference in the level of 

SRC-1 expression explained the ability of ta- 
moxifen to stimulate c-Myc and IGF-I transcrip- 
tion, we first overexpressed SRC-1 in MCF-7 
cells. Remarkably, expression of both c-Myc 
and IGF-I was stimulated by tamoxifen in SRC- 
1transfected MCF-7 cells but not in GRIP1- or 
AIBl-transfected cells (Fig. 3B). This finding 
supports our conclusion that a high level of 
SRC-1 expression is sufficient to support the 
agonist activity of tamoxifen. 

To determine whether SRC-1 is required for 
tamoxifen agonism, we silenced its expression 
in Ishikawa cells by RNA interference using 
short interfering RNA (siRNA) molecules (10, 
19). Reduction of SRC-1 levels in Ishikawa 
cells eliminated tamoxifen-stimulated expres- 
sion of c-Myc and IGF-I (Fig. 4A). It was 
interesting that SRC-1 silencing had only mini- 
mal effects on the E2-stimulated expression of 
c-Myc and IGF-I. In contrast, silencing of AIB 1 
expression led to a modest decrease in both E2- 
and tamoxifen-stimulated expression of c-Myc 
and IGF-I (Fig. 4A). These results strongly sug- 
gest that, although AIB1 plays a role in the 
maximal activity of both estrogen and tamox- 
ifen, SRC-1 is specifically necessary for the 
agonist activity of tamoxifen in endometrial 
cells. These observations also suggest that the 
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specific coactivator requirements for estrogen- 
and tamoxifen-stimulated gene expression are 
distinct. 

To determine whether SRC-1 expression 
was required for the growth stimulatory effects 
of tamoxifen in endometrial cells, we examined 
the effects of SRC-1 silencing on tamoxifen- 
stimulated cell-cycle progression in Ishikawa 
cells (Fig. 4B). As was the case for c-Myc and 
IGF-I expression, SRC-1 silencing abolished 
tamoxifen-stimulated cell-cycle progression but 
had only minimal effects on E2-stimulated cell- 
cycle progression. These results indicate that 
SRC-1 is a necessary determinant for the estro- 
genic effect of tamoxifen in endometrial cells. 

In summary, in the breast where tamoxifen 
and raloxifene are both antagonists, both 
SERMs induce the recruitment of corepressors 
and not coactivators to ER target promoters. In 
contrast, in the endometrium where tamoxifen 
acts as an agonist and raloxifene as an antago- 
nist, tamoxifen recruits coactivators instead of 
corepressors to ER target genes that do not 
contain a classical ERE, such as c-Myc and 
IGF-I. Finally, SRC-1 is required for the estrogen- 
like properties of tamoxifen in the endometrium. 

It is unclear how coactivators are recruited 
by tamoxifen-bound ER to promoters that do 
not contain an ERE. Whether the ER AF-1 
domain implicated in the agonist activity of 
tamoxifen (20-23) or the reported in vitro 
interactions of SRC-1 with AF-1 (24, 25) are 
relevant to the recruitment of SRC-1 by ta- 
moxifen-bound ER remains to be shown. It 
may be that the binding of coactivators to 
tamoxifen-liganded ER is blocked when ER 
is directly bound to DNA through a classical 
ERE, but that when interacting with promot- 
ers indirectly, tamoxifen-bound ER adopts a 
conformation that promotes SRC-1 binding. 

These experiments are based on a limited 
number of ER target genes and coactivators. It 
remains to be determined if c-Myc and/or IGF-I 
are the critical genes involved in tamoxifen- 
stimulated endometrial growth or endometrial 
cancer. However, c-Myc has been implicated in 
cell growth, proliferation, apoptosis, and malig- 
nant transformation (26). In addition, overex- 
pression of c-Myc and c-Myc gene amplifica- 
tion have been reported in a variety of malig- 
nancies including endometrial cancer (27, 28). 
Likewise, the roles of IGF-I in cell proliferation 
and survival have also been well established 
(29). 

Finally, our results do not exclude the pos- 
sibility that other as-yet-undetermined cell-spe- 
cific factors may contribute to the spectrum of 
SERM action. Our findings, however, do estab- 
lish that cell type- and promoter-specific differ- 
ences in coregulator recruitment plays a critical 
role in determining SERM function in the breast 
and uterus and offers a paradigm for understand- 
ing SERM action in other important target or- 
gans such as the brain, skeleton, and cardiovas- 
cular system. 
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this association remain unanswered. Sever- 
al theories hypothesize that television vio- 
lence contributes to the development of 

aggressive behavior (7, 8). An alternative 

hypothesis is that some or all of the asso- 
ciation is due to a preference for violent 
television programs among aggressive in- 
dividuals (9). Research has provided sup- 
port for both hypotheses (10). It has also 
been hypothesized that certain environmen- 
tal characteristics, such as living in an un- 
safe neighborhood and being raised by ne- 

glectful parents increase the likelihood of 
both aggressive behavior and viewing tele- 
vised violence. This hypothesis has not 
been extensively investigated. 

Experimental and longitudinal studies 
have provided considerable support for the 

hypothesis that children's viewing of tele- 
vised violence is associated with subse- 

quent increases in aggressive behavior (11). 
However, most of these studies have inves- 
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