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Fig. 4. Population response to saccade-induced 
and external motion. (A) Response of MST direc- 
tionally selective cells as a function of direction of 
motion and task condition. Preferred directions of 
all cells are aligned and presented as upwards. 
Black curves show the activity when image mo- 
tion was due to a saccade, gray curves the image 
motion when it was due to external image mo- 
tion. (B) Time-resolved "preferred direction pop- 
ulation vector." For each cell that contributed to 
(A), the preferred direction vector was calculated 
in 10-ms bins for the active and passive condition 
[supplementary note S8 (18)] and plotted relative 
to the preferred direction as determined indepen- 
dently [supplementary note S5 (18)]. The angular 
difference between the preferred direction as- 
sessed independently [supplementary note S5 
(18)] and the preferred direction in the active 
(passive) condition determined the appearance of 
the direction vector in the plot. When the differ- 
ence was zero the vector was plotted upwards; 
when it was 180? it was plotted downwards 
[supplementary note S8 (18)]. x axis: time (in ms) 
with respect to saccade (motion) onset. 

movements. The activity of these neurons can 
be used to annul the retinal motion signal; con- 
sequently, saccade-induced motion is not per- 
ceived and external motion perception shortly 
after saccades is likely to be distorted (28). In 
addition, the sudden reversal of preferred mo- 
tion direction demonstrates that tuning proper- 
ties of cortical neurons are not necessarily static, 
but can be modified in the millisecond range. 
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Cortical Neurons Encoding Path 

and Place: Where You Go 

Is Where You Are 
Michael T. Froehler and Charles J. Duffy* 

We recorded neuronal activity in monkey medial superior temporal (MST) 
cortex during movement on a motorized sled. Most neurons showed a preferred 
heading direction, but some responded only when that heading was part of a 
particular path. Others responded only when the animal was at a certain place 
in the room, regardless of its path to that place. Video simulations of the 
self-movement scene evoked path, but not place, responses. Stationary posi- 
tioning in the room revealed location preferences that matched place prefer- 
ences recorded during movement. We conclude that MST encodes heading, 
path, and place information to support visuospatial orientation. 
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path, and place information to support visuospatial orientation. 

The visual motion of optic flow (1) is processed 
by MST neurons (2-6) to derive the heading of 
self-movement (7). Adjacent cortical areas (8- 
10) project to hippocampal (11, 12) place cells 
that build a cognitive map of the environment 
(13-15). This network may serve the path inte- 
gration of parietal self-movement responses 
(16) involved in spatial orientation (17) and 
disorientation (18). We now show that MST 
integrates heading and location to encode the 
path and place of self-movement, potentially 
serving spatial cognition. 

Natural heading sequences were pre- 
sented as translational movement on a cir- 
cular path in front of a stationary array of 
small white lights viewed during straight- 
ahead gaze (Fig. 1A) (19). 
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Most MST neurons (73%, 46/63) showed 
significant direction tuning (Fig. IB), identi- 
fied by the circular net vector (Z of circular 
distribution P < 0.05) (20, 21). 

Clockwise (CW) and counterclockwise 
(CC) circular paths presented the same head- 
ings in reversed sequences with identical 
headings on opposite sides of the room. Nev- 
ertheless, many neurons had similar heading 
preferences on CW and CC paths (Fig. 1C), 
although 40% (25/63) showed at least a two- 
fold difference (22) between CW and CC 
response amplitudes (Fig. ID). 

Most neurons with comparable CW and 
CC response amplitudes preferred the same 
heading on both paths (Fig. 2A), but some 
preferred opposite headings. The neuron in 
Fig. 2B preferred rightward CW headings 
and leftward CC headings with both respons- 
es corresponding to the front of the room. 
This neuron was more affected by place- 
during-movement than by heading or path. 

We used circular statistics (21) to describe 
heading, path, and place-during-movement se- 
lectivity. The sample's distribution of direction- 
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ality showed no predominant heading prefer- 
ence. About half (46%, 21/46) of the neurons 
showed significant directionality on only the 
CW or the CC path. The remaining neurons 
(54%, 25/46) showed significant directionality 
on both paths, most (35%, 16/46) with similar 
preferred headings (CW-CC difference <50?) 
but many (20%, 9/46) with opposite preferred 
headings (CW-CC difference >100?). This cre- 
ates the discontinuous distribution of directional 
differences separating heading and place prefer- 
ence neurons during movement (Fig. 2C). 

We assessed the contributions of visual 
motion and translational movement by re- 
cording responses under three conditions 

(23): optic flow video simulations presented 
while the monkey was stationary, optic flow 
presented with matching CW or CC transla- 
tional movement, and translational move- 
ment presented in darkness (no optic flow). 
Fig. 3, A to C, shows a neuron's preference 
for leftward headings on the CC path with 
optic flow alone (3A) or with translational 
movement (3B), but not with movement 
alone (3C); a typical response pattern (24). 

Optic flow with movement evoked a con- 
tinuum of CW/CC response amplitude differ- 
ences (Fig. 3D) like that seen during move- 
ment past the room-mounted lights (Fig. 1D). 
In contrast, CW/CC directional differences 

were always <90? during simulated optic 
flow with movement (Fig. 3E), with no place- 
during-movement preferences (differences 
- 180?) like those seen during movement past 
the room-mounted lights (Fig. 2C). We used 
optic flow simulating movement in front of a 
wall or through a cloud of dots (24), both 
evoked the heading-path response continuum 
without place-during-movement effects. 

The source of selectivity for place-during- 
movement was explored by positioning the 
monkey at four stationary locations on the 
circular path while it viewed the room- 
mounted lights (19). Neuronal activity var- 
ied with the monkey's stationary position in 

Fig. 1. Path-dependent 
heading selectivity. (A) The 
monkey viewed either a 
light-array or a video pro- 
jection screen during trans- 
lational sled movement on 
a circular path. (B) Spike- 
density histograms and ras- 
ter displays of a neuronal 
response showing a left-for- 
ward heading preference 
that is stronger with CW 
motion (left). (C) A neu- 
ron's responses to 16 head- 
ing intervals revealing 
greater CW heading selec- 
tivity. (D) Contrast ratios of 
CW and CC response am- 
plitudes at the neuron's 
preferred heading, 73% 
showed significant direc- 
tionality (Z statistic) on at 
least one path. 
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the room (Fig. 4A) and was not attributable 
to ocular vergence (25) or disparity (26) 
effects: there was no relationship to dis- 
tance from the wall (Fig. 4B), and all light 

Fig. 3. Path, but not 
place, preferences with 
simulated optic flow. (A 
to C) A neuron that 
showed rightward CC 
heading preferences in 
response to optic flow 
(A) regardless of trans- 
lational movement (B), 
and no response to 
movement in darkness 
(C). (D) CW/CC re- 
sponse contrast ratios 
showing path preferenc- 
es, format as in Fig. 1 D, 
16% (7/44) showed at 
least a twofold differ- 
ence. (E) Neurons with 
CW and CC responses 
showed heading, but 
not place, preferences, 
(format as in Fig. 2C). 
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fects were more common (78%, 7/9) in neu- 
rons with place-during-movement preferenc- 
es (CW/CC directional differences >100?) 
than in neurons (38%, 6/16) with heading 
preferences (CW/CC directional differences 
<50?). In addition, the preferred stationary 
location was close to the preferred place- 
during-movement (Fig. 4C). 

These experiments reveal that MST encodes 
both instantaneous heading direction and the 
path to that heading. Path-dependent heading 
responses from simulated optic flow show the 
influence of the context (16, 28) created by 
heading sequences. The absence of context ef- 
fects with other stimuli (29) suggests a critical 
role for heading sequences that represent a nat- 
uralistic path. 

The heading-path response continuum must 
be separate from place preferences, because 
they are double-dissociated: Optic flow simula- 
tions yield path, but not place-during-move- 
ment, preferences; and stationary positioning 
yields location effects without a path. Neverthe- 
less, path and place effects might interact. Stim- 
ulus sequence effects could support path inte- 
gration and update position in the hippocampal 
place map (14, 15, 30). Hippocampal place in- 
formation might feed back to create location 
effects when the monkey is stationary and path 
effects when the monkey is moving. Such re- 
ciprocal interactions may transform self-move- 
ment signals into a cognitive map; converting 
where you go, to where you are. 

Fig. 4. Stationary loca- 
tion and place-during- 
movement preferences. 
(A) A neuron recorded at 
four stationary locations 
and preferring the right- 
forward location. (B) Pre- 
ferred stationary loca- 
tions (open, n = 26) and 
places-during-movement 
(filled, n = 9) on the cir- 
cular path. (C) Similarity 
of preferred stationary 
locations and places-dur- 
ing-movement for the 22 
neurons with significant 
location effects and sig- 
nificant responses on 
both CW and CC paths. 
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Tissue Specificity of SERMs 

Yongfeng Shang and Myles Brown* 

Selective estrogen receptor modulators (SERMs) mimic estrogen action in cer- 
tain tissues while opposing it in others. The therapeutic effectiveness of SERMs 
such as tamoxifen and raloxifene in breast cancer depends on their antiestro- 
genic activity. In the uterus, however, tamoxifen is estrogenic. Here, we show 
that both tamoxifen and raloxifene induce the recruitment of corepressors to 
target gene promoters in mammary cells. In endometrial cells, tamoxifen, but 
not raloxifene, acts like estrogen by stimulating the recruitment of coactivators 
to a subset of genes. The estrogen-like activity of tamoxifen in the uterus 
requires a high level of steroid receptor coactivator 1 (SRC-1) expression. Thus 
cell type- and promoter-specific differences in coregulator recruitment deter- 
mine the cellular response to SERMs. 
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Tamoxifen and raloxifene are selective estro- 
gen receptor modulators (SERMs) that bind 
the estrogen receptor (ER) and modulate ER- 
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mediated gene transcription. Tamoxifen is an 
effective treatment for all stages of hormone- 
responsive breast cancer and can prevent 
breast cancer in high-risk women (1). How- 
ever, tamoxifen has partial estrogenic activity 
in the uterus and is associated with an in- 
creased incidence of endometrial hyperplasia 
and cancer. Raloxifene, approved for the pre- 
vention and treatment of osteoporosis in post- 
menopausal women, also appears to prevent 
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