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M aterials based on nanometer-sized 
structural elements exhibit unique 
electronic, optical, magnetic, and 

mechanical properties, opening up a range of 
new applications (1, 2). The mechanical be- 
havior of nanocrystalline materials-solids 
composed of nanometer-scale crystallites di- 
vided by interfaces (see the figure)-is of Rota 
particular interest. Such materials are often Nan( 
extremely hard and brittle, but several exam- scale 
ples of substantial ductility under mechani- aries 
cal load have been reported (3). Some forrr 
nanocrystalline metals, ceramics, and alloys discl 
even exhibit superplasticity-the ability of a rotal 
solid to endure large elongations (100% or 
more) without failure-at relatively low tem- and 
peratures and high strain rates (4, 5). unic 

These remarkable mechanical properties rials 
of nanocrystalline materials are highly desir- defc 
able for structural applications. To optimize 1 
the mechanical behavior, it is important to plas 
identify its underlying mechanisms. One of be c 
these mechanisms has now been revealed in (7, d 
an atomic-level experiment. On page 2433 of teri2 
this issue, Murayama et al. (6) provide evi- tice 
dence for a rotational deformation mecha- dipc 
nism (see the figure), considered in theoreti- crys 
cal models (7, 8), which resembles turbu- dipc 
lence in fluids as well as the formation of ro- disc 
tational vortices in liquid crystals, superflu- l 
ids, and magnetic and biological systems (9). grai 

The appearance of rotational phenome- pani 
na in deformed nanocrystalline materials disc 
can be understood in terms of their struc- tion 
tural peculiarities. The materials are com- intei 
posed of nanometer-scale crystallites the 
(grains) divided by interfaces (grain bound- higi 
aries) (see the figure). Each crystallite is in- (8). 
termediate in size between individual atoms tion 
and conventional microstructures, leading nan4 
to distinct properties. In addition, each ime: 
crystallite is so small that a large fraction of I 
its atoms (up to 50%) are located at inter- othe 
faces. These combined nanometer-scale fect 
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ational deformation in nanostructures. 
ocrystalline solid, consisting of nanometer- 
e grains (hexagons) divided by grain bound- 
;, under mechanical tension. Rotational de- 
nation occurs via motion of dipoles of 
inations (triangles), causing crystal lattice 
tion behind them. 

interface effects are responsible for the 
tue properties of nanocrystalline mate- 
; (1, 2) and give rise to their rotational 
)rmation. 
[he primary carriers of the rotational 
tic deformation in solids are believed to 
dipoles of grain boundary disclinations 
8). A disclination is a line defect charac- 
zed by a rotation of the crystalline lat- 
around its line (7). A disclination 

)le consists of two disclinations causing 
stal lattice rotation between them; such 
)les are energetically permitted only for 
:linations that are close to each other. 
Motion of a disclination dipole along 
n boundaries causes plastic flow accom- 
ied by crystal lattice rotation behind the 
linations (see the figure). The disclina- 
dipole motion has been suggested to be 

nsive in nanocrystalline materials, where 
volume fraction of grain boundaries is 
1 and disclinations are close to each other 
Murayama et al.'s atomic-level observa- 
i of.disclination dipoles in deformed 
ocrystalline materials (6) provides exper- 
ntal support for this suggestion. 
In addition to the rotational deformation, 
,r deformation mechanisms can occur ef- 
ively in nanocrystalline materials that usu- 
do not play an important role in conven- 
al materials. Examples are grain boundary 
ling and stress-induced mass transfer, 
ch occurs via enhanced diffusion along 
n boundaries (10-12). These mechanisms 
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are conducted by grain boundaries and com- 
pete effectively with conventional dislocation 
slip (shear) in crystallites, the mechanism that 

dominates in conventional materials. 
Unusual deformation mecha- 

nisms also occur in strained semi- 
conductor nanocrystallites, called 
quantum dots, whose deformation 
behavior is essential for their func- 
tional stability as laser elements 

(13). For instance, as a result of nanoscale 
and interface effects, nonconventional, ex- 
tended dislocations cause effective strain 
relaxation in such nanocrystallites (14). 

Different deformation mechanisms, 
most of which only occur in nanostructured 
matter, thus compete in mechanically load- 
ed nanocrystalline materials. This competi- 
tion causes the unique deformation behav- 
ior of nanocrystalline materials. Further re- 
search focusing on the fundamental laws 
that govern the competition is crucial for 
progress in fabrication, design, and process- 
ing of nanocrystalline materials with en- 
hanced mechanical characteristics. Some of 
the remaining experimental and theoretical 
challenges include identifying (new) defor- 
mation mechanisms, elucidating the influ- 
ence of plastic deformation on structural 
transformations (including structural stabil- 
ity against grain growth), and understand- 
ing the role of distinct structural elements 
of grain boundaries in deformation process- 
es in nanocrystalline materials. 
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