
wide range of A3 and amyloid deposition 
that occurs with age in both humans and 
PDAPP mice, all PDAPP mice overproduce 
human Ap and, unlike humans, all mice 
will eventually develop A3 and amyloid 
deposition in the brain. In quantitative 
terms, this contrasts with what is observed 
in the aging human brain. Whereas cortical 
amyloid plaque burden in humans with pre- 
clinical and clinical AD are similar to each 
other and to that observed in the PDAPP 
mice we studied with high A3 burden, 
studies have shown that most cognitively 
normal elderly humans (-70% by age 75) 
have either no or only very small amounts 
of cortical A3 deposition (3, 20). The latter 
human group would be analogous to the 
mice in our study with little to no A3 

deposition (lowest quartile). This dichoto- 
my in amyloid plaque burden observed in 
the aging human brain suggests, therefore, 
that measuring plasma A3 after administra- 
tion of antibody to A3 may be able to 
clearly distinguish such individuals. Thus, 
the use of a monoclonal antibody with char- 
acteristics similar to m266 but developed 
for humans may provide a means to devel- 
op a facile diagnostic test to quantify amy- 
loid burden in persons with pre-clinical 
AD, as well as to assist in the differential 
diagnosis of clinical AD. Such a test may 
also have utility for monitoring the re- 
sponse to anti-amyloid therapy. 

The highly significant correlations be- 
tween plasma Ai and both brain Ap and 
amyloid burden strongly suggest that the 
presence of m266 in the peripheral circula- 
tion directly facilitated net Ap efflux from 
the brain, acting as a "peripheral sink." 
Further supporting this model is that sig- 
nificant correlations were observed within 
5 min after peripheral injection of m266. 
By increasing Ap efflux from brain, it ap- 
pears that the presence of m266 in plasma 
can also reveal quantitative differences in 
brain A3 deposition, presumably by facili- 
tating efflux of soluble Ap from brain. 
Taken together, our data suggest that brain 
AP clearance is a dynamic process and that 
modifying this process may be useful in 
both diagnosing and treating AD. 

References and Notes 
1. D. J. Selkoe, Physiol. Rev. 81, 741 (2001). 
2. H. Yamaguchi, S. Sugihara, A. Ogawa, N. Oshima, Y. 

Ihara, J. Neuropathol. Exp. Neurol. 60, 731 (2001). 
3. J. L Price, J. C. Morris, Ann. Neurol 45, 358 (1999). 
4. T. Gomez-lsla et al. J. Neurosci. 16, 4491 (1996). 
5. J. L Price et al., Arch. Neurol. 58, 1395 (2001). 
6. J.-F. Ghersi-Egea et al.,J. Neurochem. 67, 880 (1996). 
7. M. Shibata et al., J. Clin. Invest. 106, 1489 (2000). 
8. Y. Ji, B. Permanne, E. M. Sigurdsson, D. M. Holtzman, 

T. Wisniewski, J. Alzheimer's Dis. 3, 23 (2001). 
9. R. B. DeMattos et aL, Proc. Natl. Acad. Sci. U.S.A. 98, 

8850 (2001). 
10. D. Games et al., Nature 373, 523 (1995). 

wide range of A3 and amyloid deposition 
that occurs with age in both humans and 
PDAPP mice, all PDAPP mice overproduce 
human Ap and, unlike humans, all mice 
will eventually develop A3 and amyloid 
deposition in the brain. In quantitative 
terms, this contrasts with what is observed 
in the aging human brain. Whereas cortical 
amyloid plaque burden in humans with pre- 
clinical and clinical AD are similar to each 
other and to that observed in the PDAPP 
mice we studied with high A3 burden, 
studies have shown that most cognitively 
normal elderly humans (-70% by age 75) 
have either no or only very small amounts 
of cortical A3 deposition (3, 20). The latter 
human group would be analogous to the 
mice in our study with little to no A3 

deposition (lowest quartile). This dichoto- 
my in amyloid plaque burden observed in 
the aging human brain suggests, therefore, 
that measuring plasma A3 after administra- 
tion of antibody to A3 may be able to 
clearly distinguish such individuals. Thus, 
the use of a monoclonal antibody with char- 
acteristics similar to m266 but developed 
for humans may provide a means to devel- 
op a facile diagnostic test to quantify amy- 
loid burden in persons with pre-clinical 
AD, as well as to assist in the differential 
diagnosis of clinical AD. Such a test may 
also have utility for monitoring the re- 
sponse to anti-amyloid therapy. 

The highly significant correlations be- 
tween plasma Ai and both brain Ap and 
amyloid burden strongly suggest that the 
presence of m266 in the peripheral circula- 
tion directly facilitated net Ap efflux from 
the brain, acting as a "peripheral sink." 
Further supporting this model is that sig- 
nificant correlations were observed within 
5 min after peripheral injection of m266. 
By increasing Ap efflux from brain, it ap- 
pears that the presence of m266 in plasma 
can also reveal quantitative differences in 
brain A3 deposition, presumably by facili- 
tating efflux of soluble Ap from brain. 
Taken together, our data suggest that brain 
AP clearance is a dynamic process and that 
modifying this process may be useful in 
both diagnosing and treating AD. 

References and Notes 
1. D. J. Selkoe, Physiol. Rev. 81, 741 (2001). 
2. H. Yamaguchi, S. Sugihara, A. Ogawa, N. Oshima, Y. 

Ihara, J. Neuropathol. Exp. Neurol. 60, 731 (2001). 
3. J. L Price, J. C. Morris, Ann. Neurol 45, 358 (1999). 
4. T. Gomez-lsla et al. J. Neurosci. 16, 4491 (1996). 
5. J. L Price et al., Arch. Neurol. 58, 1395 (2001). 
6. J.-F. Ghersi-Egea et al.,J. Neurochem. 67, 880 (1996). 
7. M. Shibata et al., J. Clin. Invest. 106, 1489 (2000). 
8. Y. Ji, B. Permanne, E. M. Sigurdsson, D. M. Holtzman, 

T. Wisniewski, J. Alzheimer's Dis. 3, 23 (2001). 
9. R. B. DeMattos et aL, Proc. Natl. Acad. Sci. U.S.A. 98, 

8850 (2001). 
10. D. Games et al., Nature 373, 523 (1995). 
11. J. Wang, D. W. Dickson, J. Q. Trojanowski, V. M. Y. Lee, 

Exp. Neurol. 158, 328 (1999). 
11. J. Wang, D. W. Dickson, J. Q. Trojanowski, V. M. Y. Lee, 

Exp. Neurol. 158, 328 (1999). 

REPORTS 

12. J. Naslund et al., JAMA 283, 1571 (2000). 
13. Supplemental data are available on Science Online at 

www.sciencemag.org/cgi/content/full/295/5563/ 
2264/DC1. 

14. C. E. Fishman et al., J. Neurosci. Methods 108, 145 

(2001). 
15. D. M. Holtzman et al., Proc. Natl. Acad. Sci. U.S.A. 

97, 2892 (2000). 
16. P. D. Mehta et al., Arch. Neurol. 57, 100 (2000). 
17. L Breiman, J. Friedman, R. Olshen, X. Stone, Classifi- 

cation and Regression Trees (CRC Press, Boca Raton, 
FL, 1984). 

REPORTS 

12. J. Naslund et al., JAMA 283, 1571 (2000). 
13. Supplemental data are available on Science Online at 

www.sciencemag.org/cgi/content/full/295/5563/ 
2264/DC1. 

14. C. E. Fishman et al., J. Neurosci. Methods 108, 145 

(2001). 
15. D. M. Holtzman et al., Proc. Natl. Acad. Sci. U.S.A. 

97, 2892 (2000). 
16. P. D. Mehta et al., Arch. Neurol. 57, 100 (2000). 
17. L Breiman, J. Friedman, R. Olshen, X. Stone, Classifi- 

cation and Regression Trees (CRC Press, Boca Raton, 
FL, 1984). 

18. For more information see: www.recursive-partitioning. 
com/Bibliography/. 

19. See Web fig. 2 (13). 
20. J. C. Morris et al., Neurology 46, 707 (1996). 
21. The authors wish to acknowledge the technical as- 

sistance of X Wu, C. DeLong, M. Parsadanian, and M. 
O'Dell and the helpful comments of J. Morris, E. 
Johnson, R. Dean, P. May, T. Augsberger-Brown, and 
D. Choi. Supported by Eli Lilly and Co. D.M.H. is also 
supported by National Institute on Aging (grant 
AG20222). 

30 October 2001; accepted 13 February 2002 

18. For more information see: www.recursive-partitioning. 
com/Bibliography/. 

19. See Web fig. 2 (13). 
20. J. C. Morris et al., Neurology 46, 707 (1996). 
21. The authors wish to acknowledge the technical as- 

sistance of X Wu, C. DeLong, M. Parsadanian, and M. 
O'Dell and the helpful comments of J. Morris, E. 
Johnson, R. Dean, P. May, T. Augsberger-Brown, and 
D. Choi. Supported by Eli Lilly and Co. D.M.H. is also 
supported by National Institute on Aging (grant 
AG20222). 

30 October 2001; accepted 13 February 2002 

Dynamics of Pleistocene 

Population Extinctions in 

Beringian Brown Bears 

1. Barnes,l12 P. Matheus,3 B. Shapiro,2 D. Jensen,2* A. Cooper7' 

The climatic and environmental changes associated with the last glaciation 
(90,000 to 10,000 years before the present; 90 to 10 ka B.P.) are an important 
example of the effects of global climate change on biological diversity. These 
effects were particularly marked in Beringia (northeastern Siberia, northwestern 
North America, and the exposed Bering Strait) during the late Pleistocene. To 

investigate the evolutionary impact of these events, we studied genetic change 
in the brown bear, Ursus arctos, in eastern Beringia over the past 60,000 years 
using DNA preserved in permafrost remains. A marked degree of genetic struc- 
ture is observed in populations throughout this period despite local extinctions, 
reinvasions, and potential interspecies competition with the short-faced bear, 
Arctodus simus. The major phylogeographic changes occurred 35 to 21 ka B.P., 
before the glacial maximum, and little change is observed after this time. Late 
Pleistocene histories of mammalian taxa may be more complex than those that 

might be inferred from the fossil record or contemporary DNA sequences alone. 
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Throughout the late Pleistocene Beringia 
formed a largely ice-free subcontinent connect- 
ing the Old and New Worlds. This period saw a 
number of major events including global climat- 
ic change, the movement of humans into the 
New World (-13 ka B.P.), and a large-scale 
extinction of megafauna (-12 to 10 ka B.P.). 
Preliminary studies of mammal bones preserved 
in permafrost deposits have shown that genetic 
information can be retrieved from material aged 
more than 60 ka B.P., beyond the limit of radio- 
carbon dating (1-4). To study genetic change in 
large-mammal populations throughout this peri- 
od, we examined 71 brown bears preserved in 
east Beringian permafrost and cave deposits, 
comprising all suitable specimens available in 
museums. Brown bears were chosen because 
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their extensive modem distribution in Europe, 
Asia, and North America shows strong phylo- 
geographic structuring (5-7), and they are 
thought to have entered Eastern Beringia early 
in the last (Wisconsinan) glaciation (8). In 
North America, three genetically and geograph- 
ically distinct clades of brown bears (2, 3, and 4) 
are currently recognized (Figs. 1 and 2D) as well 
as several subclades (3a, 3b, 2a), one of which 
consists of the polar bear [U. maritimus, 2b (7)]. 
Studies suggest that much of this structure may 
have resulted from expansions following glacial 
population bottlenecks, and that late Pleistocene 
populations were considerably more diverse ge- 
netically (2). 

DNA was obtained from cortical bone sam- 
ples (-0.5 g) of 36 specimens by established 
ancient-DNA techniques (9). Two sections of 
the mitochondrial (mt) control region, 135 and 
60 base pairs (bp), respectively, were amplified 
by polymerase chain reaction (PCR). Primer 
pairs were chosen to amplify short yet highly 
variable regions of mtDNA, to maximize an- 
cient-DNA recovery while allowing the detec- 
tion of population turover through time. The 
phylogenetic relationships of brown bear clades 
have been previously established with the use 
of longer sequences (7). Stratigraphic control is 
often lacking for permafrost bones, so radiocar- 
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bon dates were obtained for 30 specimens that 
contained DNA (10), along with carbon and 
nitrogen stable-isotope values [see supplemen- 
tary material (11)]. 

The genetic and radiometric data (Figs. 1 
and 3A) record a dynamic population history in 
eastern Beringia over the past 60 ka B.P. and 
reveal genetic continuity within each of three 
periods: pre-35 ka B.P., 21 to 10 ka B.P., and at 
present. In the oldest period (Fig. 2), the fossil 
sequences reveal the presence of extinct sub- 
clades in both interior Alaska (3c) and Yukon/ 
northern Alaska/Siberia (2c). No brown bear 
fossils dating between 35 and 21 ka B.P. have 
been found in east Beringia, but after this time 
the moder subclade 3b, which does not seem 
to be directly derived from 3c, appears in the 
Fairbanks area. This population remained in 
place until at least 10 ka B.P., some point after 
which it was replaced by subclade 3a, and it is 
now present only in the eastern and southeast- 
ern margins of Alaska. The extinct subclade 2c 
indicates that clade 2 was formerly more di- 
verse and widespread across eastern Beringia, 
and that the current restriction to the Alexander/ 
Baranof/Chicaghof (ABC) Islands (2a) and po- 
lar bears (2b) is a recent pattern. A contraction 
in range is supported by the finding that ABC 
Island bear sequences occurred farther south, 
on Prince of Wales Island, in the terminal Pleis- 
tocene. The finding of a polar bear sequence 

A-1: Fairbanks Area 
2: Fairbanks Area 

r- 3: Fairbanks Area 
- 0.005 substitutions/site 4-6: Fairbanks Area 7: Fairbanks Area 
Sample dates: - 8-14: Fairbanks Area 
Modern L K!uane Yukon 

~Modern _ 15-16: Fairbanks Area 
21-10 ka BP 17: Fairbans Area 
>35 ka BP Alaska S Coast 
Undated _ - Honshu, Japan 

18: Fairbanks Area 
19: Fairbanks Area 

20: Fairbanks Area 
21: Fairbanks Area 
22: Fairbanks Area 

23: Fairbanks Area 
24: Fairbanks Area 

25: Fairbanks Area 
26: Fairbanks Area 

-r-- " 27: Fairbanks Area 
28: Fairbanks Area 

Katmai, S Alaska 
E. Siberia 

W. Alaska 
Central Alaska 

r Honshu ,aPan 
Horiu, Japan _ _ [ _ _ 

29 Wyoming 
Yellowstone 
Montana 

_ 30: Sixt Ml e 
:r 35: PoW Is, SE Alaska 

-- r-!-'- ABC Is, SE Alaska - - ABC Is SE Alaska L ABC Is, SE Alaska 
31: Fairbanks Area - 

Norway (Polar bears) 
Russia I- orway 
- 
- 32: Colville River 

I L 33: Sixty Mile - 34: Lower Kolyma 
Norway 
36: Scotland 

. France 
Spain 

Italy Romania 
U. americanus 

(2b) in Fairbanks is particularly unexpected, 
even at 19 ka B.P. during the height of the 
glaciation, and although stable-isotope data 
support this identification (Fig. 3B), inaccurate 
provenance data may be a more likely explana- 
tion [see supplementary material (11)]. 

Within each of the three periods identified 
in the data, bear populations covering quite 
broad geographic areas appear reciprocally 
monophyletic for mt clades (Fig. 2, A to D). 
This suggests that, despite several population 
extinctions and replacements, east Beringian 
bear populations have maintained a large de- 
gree of genetic structure over time and space. 
Well-sampled groups such as 3b (n = 20) 
indicate that the earliest members of the col- 
onizing population were already monophylet- 
ic for the subclade (Fig. 3A), and therefore 
that the monophyletic pattern was not the 
product of genetic drift within a diverse 
founder population. Furthermore, the se- 
quence diversity within fossil 3b specimens is 
far greater than would be expected from mu- 
tation alone following an initial appearance at 
21 ka B.P., assuming a mutation rate of 11 to 
14% per million years (7). Therefore, the 
founding population at 21 ka B.P. appears to 
have contained considerable amounts of ex- 
isting, but already monophyletic, mt diversi- 
ty. This is not consistent with a very small 
founding population, but rather indicates a 
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10. Gold Hill 13760+50 
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31. Engineer Creek 19360?140 
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35. Prince of Wales I. 9995?95 
36. Bear Cave, Scotland Late Holocene 
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37. Hunker Creek 41000?1050 

Fig. 1. Phylogeny and sample details for brown bear (U. arctos) specimens. (A) Phylogenetic tree 
constructed with two fragments (135 and 60 bp) of the control region and neighbor-joining (HKY 
model) showing clades (1 to 4) and subclades (a to c). The topology is in agreement with that of 
other, larger data sets (7). (B) Radiocarbon dates and specific locations of the specimens. Additional 
specimen data are provided in the supplementary material (11). 

larger group that had been drawn from a more 
diverse, but primarily monophyletic, popula- 
tion elsewhere. 

Few specimens are available from pre-35 
ka B.P. populations, but within this group only 
the Yukon Territory population (Sixtymile) ap- 
pears polyphyletic (4 and 2c, n = 2). In con- 
trast, the bear population around Fairbanks at 
the same time appears monophyletic for sub- 
clade 3c (n = 8). This geographic division 
between bear populations in interior Alaska and 
the Yukon Territory is similar to that between 
moder 3a/3b populations, indicating that the 
geographic location of population barriers (but 
not the populations themselves) may be rela- 
tively constant through time. Such barriers are 
presumably ecological or physiographic (e.g., 
the Yukon-Tanana Uplands, Olgilvie Moun- 
tains, Brooks Range) (Fig. 2A). 

Currently, mt subdivisions in extant brown 
bear populations are allopatric, and this pattern 
is assumed to result from barriers to gene flow 
and low dispersal rates maintained by maternal 
philopatry and population isolation (12). How- 
ever, our data suggest that marked phylogeo- 
graphic structure has existed for long periods, 
even during large-scale phases of dispersal, ex- 
tinction, and replacement. Furthermore, the im- 
plicit diversity of the founding members of 
clade 3b suggests that the monophyletic popu- 
lations detected in this study may have been 
drawn in turn from other primarily monophylet- 
ic, diverse populations elsewhere, indicating that 
the pattern may hold on a greater Holarctic 
scale. It is not obvious how the strict, wide- 
spread genetic partitioning observed here could 
have been maintained under such dynamic con- 
ditions for over 60,000 years. It is possible that 
rapid climatic shifts, combined with the strong 
environmental regionalism identified in Bering- 
ian climatic and palynological records (13, 14), 
may have caused repeated phases of population 
isolation and localized extinctions, promoting 
monophyletic mtDNA population structures 
(15). 

A hiatus in the fossil record, such as the 
absence of brown bear -35 to 21 ka B.P., may 
represent either true species absence, tapho- 
nomic biases, or random sampling error. Tapho- 
nomic exclusion of brown bear fossils seems 
unlikely because hundreds of radiocarbon dates 
have been generated for late Quaternary mam- 
mals in eastern Beringia, and there are no gen- 
eral hiatuses in the overall record (16). To test 
the likelihood of random sampling error, we 
generated 100 random subsamples of 31 dates 
from a large (n = 188) database of radiocarbon- 
dated bison (Bison bison) and caribou (Rangifer 
tarandus) from eastern Beringia (there are 31 
brown bear dates from easternmost Beringia in 
our data set). In no case did random hiatuses 
between consecutive dates approach the size of 
that found in the brown bear data set (95% of 
gaps - 9700 years, mean 6264 years). We 
therefore conclude that if brown bears were 
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distributed through time in the same way as 
these other large-mammal taxa, the gap in ra- 
diocarbon dates represents a genuine local ex- 
tinction of brown bears in eastern Beringia. This 
interpretation is further supported by the differ- 
ent haplotypes observed on either side of the 
hiatus. 

Additional radiocarbon studies may modify 
the absolute dates of this hiatus, but the current 
broad pattern of extinction and subsequent re- 
colonization appears difficult to explain solely 
from paleoclimatic and paleoecological data, 
which define four broad periods in late Quater- 
nary Beringia. Toward the end of the Wiscon- 
sinan glaciation, the interstadial [marine isotope 
stage (MIS) 3, -60 to 28 ka B.P.] was a period 
of climatic amelioration, which deteriorated 
into MIS 2 (28 to 10 ka B.P.) and the last glacial 
maximum (LGM), characterized by dry tundra 
and steppe herb-dominated communities. The 
early postglacial period in eastern and central 
Beringia featured the development of a shrub 
tundra (the "birch rise") -13.5 ka B.P., which 
was succeeded by the onset of relatively mod- 
em conditions early in the Holocene (MIS 1, 10 
to 0 ka B.P.) (17). Therefore, the 35 to 21 ka 
B.P. hiatus spans a range of late Quaternary 
climatic and environmental conditions, from 
the last interstadial through to the LGM. Al- 
though some interstadial sites in eastern Ber- 
ingia suggest a moderate warming and increase 
in summer precipitation around 35 to 30 ka 
B.P., other sites do not (18). Furthermore, the 
brown bear is ecologically plastic, and it seems 
unreasonable to attribute the extinction in east- 
ern Beringia to minor climate changes. The 
recolonization around 21 ka B.P. is particularly 
surprising because this period marks the begin- 
ning of the LGM. 

Because no obvious climatic or environ- 
mental events appear to explain the extinction 
and recolonization of brown bears in eastern 
Beringia, alternative explanations need to be 
considered. There is a marked inverse corre- 
lation between the chronology of brown bears 
and the much larger, hypercarnivorous, short- 
faced bears in eastern Beringia (Fig. 3A). 
Although the two species coexisted for at 
least 10,000 years (-45 to 35 ka B.P.) during 
the interstadial, short-faced bear fossil dates 
are concentrated between 35 to 21 ka B.P. 
when brown bears were absent. Furthermore, 
brown bear recolonization (-21 ka B.P.) is 
precisely coincident with the last record of 
short-faced bears in Beringia. 

Stable-isotope data (Fig. 3B) suggest that the 
diets of the two bear species differed substan- 
tially while they were contemporaneous. En- 
riched levels of 'N show that short-faced bears 
were carivorous, whereas brown bears were 
variably omnivorous and herbivorous, similar to 
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enriched mean '5N signal relative to both the 
pre-35 ka B.P. and modem populations. How- 
ever, competitive interaction is extremely diffi- 
cult to infer from the paleo-record, and several 
environmental factors can affect isotopic ratios. 
In addition, much taxonomic turnover would be 
expected to occur around 21 ka B.P. during the 
environmental changes of the early LGM. If the 

enriched signal does indeed reflect a higher 
trophic level, then it may simply indicate an 
increased carcass biomass availability 21 to 10 
ka B.P., which presumably disappeared follow- 
ing the extinction of many large-mammal taxa 
in the terminal Pleistocene. 

Although many studies have used the distri- 
butions of genetic markers in moder popula- 
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Fig. 2. (A to D) Map showing the location of brown bear clades at four time categories in eastern 
Beringia. The dashed line in Fig. 2A indicates a possible boundary to migration (see text). The 
dashed lines in Fig. 2, B and C, indicate the extent of coastline, and the gray area indicates the 
extent of glaciation at 21 to 18 ka B.P. and 18 ka B.P., respectively (28). The dashed lines in Fig. 2D 
refer to the approximate distributions of modern brown bear clades after (7, 29). 
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tions to infer the timing and pattern of coloni- 
zation of a region (20-22), in this case simple 
inteipietations would be incorrect The pro- 
nounced phylogeographic stucture of moder 
Alaskan bears is unrelated to the separation of 
clades 3a and 3b [245 to 310 ka B.P. (7)] or the 
subsequent expansion of clade 3b (79 to 100 ka 
B.P.), which probably long preceded the colo- 
nization events in east Beringia (Fig. 2). This 
finding is supported by the presence of both 
clades in Japan (5). Furthermore, the phylogeo- 
graphic pattern is not directly attributable to a 
post-LGM expansion (2, 7, 23, 24) because 
clade 3b is present in the Fairbanks region at 21 
ka B.P., coincident with the LGM, and 3a is 
unrecrded until after 10 ka B.P. By combining 
a large number of ancient DNA sequences with 
radiocarbon, stable-isotope, and palaeoclimatic 
data, we have been able to directly study phy- 
logeographic change in late Pleistocene popula- 
tions. This record shows that the most important 
changes occurred before the LGM, hunman entry 
to the New World, or the megafaunal extinction. 
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DNA from Adelie Penguins 
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Well-preserved subfossil bones of Adelie penguins, Pygoscelis adeliae, underlie 
existing and abandoned nesting colonies in Antarctica. These bones, dating back 
to more than 7000 years before the present, harbor some of the best-preserved 
ancient DNA yet discovered. From 96 radiocarbon-aged bones, we report large 
numbers of mitochondrial haplotypes, some of which appear to be extinct, given 
the 380 living birds sampled. We demonstrate DNA sequence evolution through 
time and estimate the rate of evolution of the hypervariable region I using a 
Markov chain Monte Carlo integration and a least-squares regression analysis. 
Our calculated rates of evolution are approximately two to seven times higher 
than previous indirect phylogenetic estimates. 
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Most estimates of rates of nucleotide sequence 
evolution have been derived from comparative 
approaches among living taxa, where sequence 
divergence is calibrated against geological esti- 
mates of divergence time (1). Shields and Wil- 
son (2) estimated that the entire avian mitochon- 
drial genome evolves at a rate of approximately 
2% per million years, which is similar to the 
value commonly accepted for mammals (3). 
This value of 0.02 substitutions per site per 
million years (s/s/Myr) was then used to calcu- 
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late the rate of substitution for a portion of the 
hypervariable region I (HVRI), estimated at 
0.208 s/s/Myr, on the basis that it evolves 10.4 
times faster than the entire mitochondrial ge- 
nome (4). Ancient DNA technology (5), in prin- 
ciple, offers an opportunity to estimate more 

directly the rate of nucleotide evolution of a 

population, using analyses of individuals from 
different times. However, it is usually difficult 
to obtain a sufficient number and distribution of 
ancient samples of known ages. Because of the 
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