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In coda wave interferometry, one records multiply scattered waves at a limited 
number of receivers to infer changes in the medium over time. With this 
technique, we have determined the nonlinear dependence of the seismic ve- 
locity in granite on temperature and the associated acoustic emissions. This 
technique can be used in warning mode, to detect the presence of temporal 
changes in the medium, or in diagnostic mode, where the temporal change in 

In coda wave interferometry, one records multiply scattered waves at a limited 
number of receivers to infer changes in the medium over time. With this 
technique, we have determined the nonlinear dependence of the seismic ve- 
locity in granite on temperature and the associated acoustic emissions. This 
technique can be used in warning mode, to detect the presence of temporal 
changes in the medium, or in diagnostic mode, where the temporal change in 
the medium is quantified. 

In many applications, such as nondestruc- 
tive testing or monitoring of volcanoes or 
radioactive waste disposal sites, one is pri- 
marily interested in detecting temporal 
changes in the structure of the medium. 
Temporal changes in Earth's structure that 
accompany earthquakes have been ob- 
served on the basis of the attenuation of 
coda waves (1), on the arrival times of the 
directly arriving waves (2), on velocity 
changes inferred from later arriving waves 
(3) [see also (4)], and on changes in seis- 
mic anisotropy (5). Here, we introduce 
coda wave interferometry whereby multi- 
ply scattered waves are used to detect tem- 
poral changes in a medium by using the 
scattering medium as an interferometer. For 
quasi-random perturbations of the positions 
of point scatterers, or for a change in the 
source location or the wave velocity, esti- 
mates of this perturbation can be derived 
from multiply scattered waves by a cross 
correlation in the time domain. 

In the numerical example (Fig. 1), the wave 
field for a medium consisting of isotropic point 
scatterers is computed with the use of a deter- 
ministic variant (6, 7) of Foldy's method (8). 
Given the mean free path (1 = 20.1 m) and the 
wave velocity (v = 1500 m/s), one can infer 
that after t = 5.4 X 10-2 s the waves are on 

average scattered more than three times. The 
later part of the signal is called the coda. Sup- 
pose that one repeats this multiple scattering 
experiment after the scatterer locations are per- 
turbed. The perturbation in the scatterer loca- 
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tion is 1/30 of the dominant wavelength and is 
uncorrelated between scatterers (9). 

In this example, the scatterers' locations 
are perturbed. In general, a perturbation can 
involve other changes in the medium or a 
change in source location. We refer to the 
waveform before the perturbation as the 
unperturbed signal and to the waveform 
after the perturbation as the perturbed sig- 
nal. For early times (t < 0.04 s), the waves 
in Fig. 1 have not scattered often, rendering 
the path lengths of these waves insensitive 
to the small perturbations of the scatterers 
(small compared with the dominant wave- 
length X = 2.5 m), which causes the unper- 
turbed and perturbed signals to be similar. 
However, the multiply scattered waves are 
increasingly sensitive with time to the per- 
turbations of the scatterer locations because 
the waves bounce more often among scat- 
terers as time increases. The correlation 
between the unperturbed and perturbed sig- 
nals, therefore, decreases with increasing 
time. 
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The perturbation in the medium can be 
retrieved from the cross correlation of the 
coda waves recorded before and after the 
perturbation. The unperturbed wave field 
u,p(t) can be written as a Feynman path 
summation (10) over all possible paths P 
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where a path is defined as a sequence of 
scatterers that is encountered, tp is the trav- 
el time along path P, Ap is the correspond- 
ing amplitude, and S(t) is the source wave- 
let. When the perturbation of the scatterer 
locations (or source location) is much 
smaller than the mean free path, the effect 
of this perturbation on the geometrical 
spreading and the scattering strength can be 
ignored, and the dominant effect on the 
waveform arises from the change in the 
travel time Tp of the wave that travels along 
each path 
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where the time window is centered at time t with 
duration 2T and ts is the time shift used in the 
cross correlation. When Eqs. 1 and 2 are insert- 
ed, double sums Spp, over all paths appear. In 
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these double sums, the cross terms with different 
paths (P + P') are incoherent and average out to 
zero when the mean of the source signal van- 
ishes. This means that in this approximation 

P(t,() A2C(P - 
t,) R(t' (ts) E 7t,n A2C(O) (4) 

where P(t. ) denotes a sum over the paths 
with arrival times within the time window 
of the cross correlation, and the autocorre- 
lation of the source signal is defined as 

C(t) = f_ S(t'+t)S(t')dt'. 

For time shifts T much smaller than the 
dominant period, a second-order Taylor ex- 
pansion gives C(T) = C(0)(1 - 1/2 (2 T2), 

where )2 is the mean-squared frequency of 
the multiply scattered waves that arrive in the 
time window. Using this gives 
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) =1 -2 

(( 
- 

))(n, 
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where <... 

>(t,) 
denotes the average for the 

wave paths with arrivals in the time interval 
(t-T,t+T). 

The time-shifted cross correlation R(t, (t 
has a maximum when 

ts= ('(t,T) 

where (r )(t, ) is the mean travel time pertur- 
bation of the arrivals in the time window. The 
value of the cross correlation at its maximum 
is given by 

1 
R, =1- I 2, (7) 

where o2 is the variance of the travel time 
perturbations for waves arriving within the 
time window. Therefore, the mean and the 
variance of the travel time perturbation of the 
waves arriving in the time window can be 
extracted from the data recorded with a re- 

peatable source and one or more receivers. 
Different types of perturbations leave a 

different imprint on the time-shifted correla- 
tion coefficient. When the scatterer locations 
are perturbed independently with root mean 
square displacement 8, the mean travel time 
perturbation vanishes (<'r >(t, = 0), and 
the variance is given by (7) 

282t 

=2 
= (8) vl. 

where *1 is the transport mean free path 
(11). In deriving Eq. 8 we use that the 
number of scatterers encountered is on av- 
erage given by n = vtll, where t is the time 
that the wave has spent in the scattering 
medium. Using Eqs. 7 and 8, the root mean 
square perturbation of the scatterer location 
follows from the maximum of the time- 
windowed correlation coefficient 

vl, 
82 = (1 - R(t,T) (9) 

A different type of perturbation is a constant 
change 8v in the velocity for fixed locations 
of the scatterers. The mean travel time per- 
turbation is given by ( )(t,) = - ([v/v)t, and 
when the time window is small (T << t), or = 
0. The velocity change follows from the time 
of the maximum of the time-shifted cross 
correlation function 

V (')(t,T) - (T)(, - (10) v t 

When the perturbation consists of a displace- 
ment of the source location over a distance 8 
for a fixed medium, only the wave path to the 
first scatterer is perturbed. In that case, the 
mean travel time perturbation vanishes 
(T )(t, 

= 0, and for an isotropic source the 
variance is given by (or2) = (8/v)2. The source 
displacement, then, follows from' 

82 = (2v2/2)(1 - R(a) (11) 

These different perturbations can be dis- 
tinguished on the basis of the time-shifted 
cross correlation. When the positions of the 
scatterers are perturbed, the mean travel time 
perturbation vanishes and the maximum of 
the cross correlation decreases linearly with 
increasing time, whereas for the perturbation 
of the source position the maximum value of 
this function is independent of time. A 
change in the velocity is detectable by a shift 
in the position of the maximum of R(t)(t,), 
which increases linearly with time. 

The root mean square displacement of the 
scatterers inferred from the numerical exam- 
ple (Fig. 1) is shown in Fig. 2 as a function of 
the center time t of the time window. The 
inferred change 8 in the scatterer location 
does not depend on the center time of the 
window used for the cross correlation. This 
provides a consistency check of the method. 

The extreme sensitivity of the coda waves to 
changes in the medium is used here in a labo- 
ratory experiment to infer the temperature de- 
pendence of the seismic velocity in Elberton 
granite. In many experiments, the change in the 
seismic velocity in rock samples is measured for 
a temperature change of about 100?C (12, 13). 
In our experiment, a cylindrical sample of gran- 
ite with a height of 110 mm and a diameter of 55 
mm was heated from 20? to 90?C with a heating 
coil inside the sample and then was cooled 
down to room temperature. The heating and 
cooling phase each took about 8 hours. Two 
piezo-electric transducers were used to excite 
and record elastic waves in the sample with a 
dominant frequency of about 100 kHz. The 
waveforms were recorded after each ?5?C 
change in temperature. In order to reduce the 
influence of ambient noise, the waveforms were 
averaged over 10 repeated measurements. A 
third transducer was used to monitor the acous- 
tic emissions in the sample. 

The difference in the early part of the wave- 
forms recorded at temperatures of 45? and 50?C 
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Fig. 2. The value of 8 obtained from the time- 
windowed cross correlation of the waveforms in 
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Fig. 3. Waveforms recorded 
in the granite sample for 
temperatures of 45? and 
50?C, in blue and in red, re- 
spectively. The insets show 
details of the waveforms 
around the first arrival (top 
inset) and in the late coda 
(bottom inset). 
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(Fig. 3) are small. This change in temperature 
does not affect the first arrival, which means 
that the travel time of the first arrival cannot be 
used to infer any possible small change in ve- 

locity due to a 5?C temperature difference. The 
late time window (Fig. 3, bottom inset) shows a 
clear time shift of the waveforms. 

For each change of ?5?C in temperature, 
the change in the velocity is inferred from Eq. 
10 using 20 different time windows of the 
coda waves, each with a duration of 0.1 ms. 
The mean and variance of the velocity change 
(Fig. 4) is inferred from the estimates of the 

velocity change in the different time win- 
dows. The relative velocity change is of the 
order of 0.1% for a temperature change of 
?5?C with an error of about 0.02%. 

During the heating phase, the velocity 
change is constant for temperatures below 75?C. 
Above that temperature, the velocity change 
increases during heating (Fig. 4). The acoustic 
emissions correlate with the increased value of 
the velocity change at 75?C (14). During the 

cooling phase, the velocity change is constant 
and there are no acoustic emissions. When the 

sample is heated again to a temperature of 90?C, 
the velocity change does not increase dramati- 

cally around 75?C and there are no acoustic 
emissions (15). In order to test whether the 
transducer coupling and the presence of the 

heating coil played a role, we repeated the ex- 

periment with an aluminum sample. In that case 
the velocity change is constant both during heat- 

ing and cooling. 
The acoustic emissions and the change in 

the velocity gradient occur only in a pristine 
sample during heating [the Kaiser effect (14)] 
and are due to the irreversible formation of 
fractures by differential thermal expansion (16) 
of the minerals in the sample. This indicates 
that the velocity change is due to two different 
mechanisms. The first is a reversible change in 

velocity due to the change in bulk elastic con- 
stants with temperature. The second mecha- 
nism is associated with irreversible changes in 
the sample that generate acoustic emissions. 
The damage done to the sample leads to a 
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greater change in the seismic velocity with in- 

creasing temperature. 
These measurements could be carried out 

because of the extreme sensitivity of coda 
wave interferometry to changes in the medi- 
um. This technique makes it possible to infer 
the nonlinear dependence of the velocity on 

temperature that is associated with irrevers- 
ible damage to the granite sample. 
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To examine the role of T cell receptor (TCR) in y8 T cells in adaptive immunity, 
a macaque model was used to follow Vy2V52+ T cell responses to mycobac- 
terial infections. These phosphoantigen-specific ya T cells displayed major 
expansion during Mycobacterium bovis Bacille Calmette-Guerin (BCG) infection 
and a clear memory-type response after BCG reinfection. Primary and recall 

expansions of Vy2V82+ T cells were also seen during Mycobacterium tuber- 
culosis infection of naive and BCG-vaccinated macaques, respectively. This 

capacity to rapidly expand coincided with a clearance of BCG bacteremia and 

immunity to fatal tuberculosis in BCG-vaccinated macaques. Thus, Vy2V82+ 
T cells may contribute to adaptive immunity to mycobacterial infections. 
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