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The variability-generating system is theo- 
retically capable of generating over 7.0 X 
1013 different nucleotide sequences and 
9.2 x 1012 amino acid sequences in VR1 and 
the encoded product, respectively (18). The 
close proximity of required genetic elements 
suggests that it operates as a variability-gen- 
erating cassette with three major components: 
a reverse transcriptase, a template repeat, and 
a second repeated sequence capable of vari- 
ation. A more detailed understanding of the 
variability mechanism should allow us to en- 
gineer constructs designed to promote in vivo 
targeted mutagenesis of specific DNA se- 
quences. Such capability could be useful in 
applications where massive parallel screening 
of diverse protein sequences is desirable. 

Reverse transcriptases are ubiquitous in 
nature. They are frequently found in both 
prokaryotic and eukaryotic genomes and are 
often associated with mobile genetic ele- 
ments (19). Indeed, over 40% of the human 
genome appears to have resulted from the 
process of reverse transcription (20). Varia- 
tions of the RT-dependent diversity-generat- 
ing mechanism described here could confer 
powerful selective advantages in a variety of 
biological contexts. It will be of interest to 
determine if this adaptive mechanism has 
found utility in nature in addition to its role in 
facilitating tropism switching by Bordetella 
bacteriophages. 
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Certain intracellular phosphatases contain 
SH2 domains that enable their recruitment to 
phosphorylated tyrosine residues in the cyto- 
plasmic tails of inhibitory receptors (1). Fol- 
lowing recruitment to the plasma mem- 
brane, these enzymes remove phosphate 
groups on other proteins or inositol phos- 
pholipids and thus counteract signaling cas- 
cades necessary for cell survival, prolifer- 
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ation or differentiation. SHIP is one of 
these signaling phosphatases (2-4). SHIP 
has been shown to limit the number of 
myeloid cells produced in vivo demonstrat- 
ing it as a crucial mediator of survival 
signals in a hematopoietic lineage (5, 6). 

In order to examine the role SHIP plays in 
NK development and function, we generated 
mice with a targeted mutation in the SHIP gene 
resulting in SHIP-deficient mice (7). Analysis 
of the peripheral NK compartment at different 
stages of ontogeny (7) indicated NK cells de- 
velop normally in juvenile SHIP-'-- mice (Fig. 
1A). However, in adult mice an abnormal pop- 
ulation of NK cells appears that expresses ap- 
proximately 10-fold higher surface levels of the 
NK receptor, NKI.1 (NKl.lh) (Fig. 1A). The 
NKl.lhi population lacks CD3 and thus is not 
an NK-T cell population. The appearance of the 
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vival after such transplants. Thus, SHIP plays an important role in two processes 
that limit the success of allogeneic marrow transplantation: graft rejection and 
graft-versus-host disease. 
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B 7.5- Fig. 1. Increased NK cell 
numbers in SHIP-/- mice 
due to enhanced survival. 
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SHIP-/- (n = 3) mice im- 
mediately following 1 week on BrdU drinking water (Pulse) or after a 2-week chase (Pulse+Chase). P-values: 
**P = 0.2 for SHIP-/- versus SHIP+/+ in the "Pulse" analysis, *P = 0.05 for SHIP-/- versus SHIP+/+ in the 
"Pulse+Chase" analysis. Representative histograms for BrdU labeling of NK1.1+CD3- cells from +/+ 
and -/- animals in the Pulse+Chase group are shown. 

NKl.lhi population coupled with an increase in 
NK cells with a normal 2B4+NK1.1 + staining 
profile (NK1.1 + cells) leads to a two- to three- 
fold increase in peripheral NK cells in SHIP-/- 
adult mice (?8 weeks), relative to wild-type 
littermates (Fig. 1B). 

We then examined whether the increased 
number of NK cells present in SHIP-'- mice is 
due to increased proliferation or due to en- 
hanced survival (7). When SHIP-/- and 
SHIP'+/ mice were labeled for 1 week with 
BrdU and their NK compartments were ana- 
lyzed, we found no significant difference in 
BrdU uptake (Fig. 1C) indicating NK cells in 
both genotypes have similar rates of production 
and proliferation. However, when mice were 
pulsed with BrdU for 1 week and the mice 
analyzed 2 weeks later, a significantly larger 
proportion of the SHIP-/- NK compartment 
retained the BrdU label (Fig. 1C), demonstrat- 
ing that SHIP-'- NK cells survive longer in 
vivo than do their SHIP++' counterparts. 

Murine NK cells detect MHC class I mole- 
cules using receptors encoded by the Ly49 or 
CD94/NKG2 genes (8). Expression of these 
MHC receptors is distributed among different 
NK subsets during the transition from neonate 
to adult. Because the number of peripheral NK 
cells increases in SHIP-/- mice during this 
period, we asked whether the relative represen- 
tation of NK subsets expressing certain Ly49 
and CD94 receptors might account for this in- 
crease (7). Indeed, the relative representation of 
several Ly49 receptors and CD94 was signifi- 
cantly altered in the SHIP-/- NK compartment 
of older mice when compared to SHIP+'+ lit- 
termates (Fig. 2) (7). However, SHIP-- wean- 
lings showed no skewing of their NK reper- 
toire, relative to wild-type littermates (Fig. 2) 
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Fig. 2. MHC class I receptors on peripheral NK cells in SHIP-/- mice. The mean percentage of peripheral 
NK cells expressing the indicated Ly49 or CD94 molecule after gating on 2B4+NK1.1+ cells. The age and 
genotype of the mice are indicated. Values determined for SHIP-/- mice that are significantly 
different from their age-matched SHIP+/+ littermates are indicated: *, P < 0.05; t, P < 0.01. 

(7). This repertoire distortion was most pro- 
nounced in mice -8 weeks of age and was 
found in both the NK1.1+ and the NKl.lhi 
populations. We found that expression of 
Ly49A+ and C/I+ was overrepresented in adult 
SHIP-/- mice, while Ly49D, G2 and CD94 were 
underrepresented (7). Because the overwhelm- 
ing majority of the NK1.1' and NKl.lhi cell 
populations lacked Ly49I in adult SHIP-/- 
mice (7), then the majority of the Ly49C/I+ 
NK cells express only Ly49C. Thus, the reper- 
toire distortion in adult SHIP-/- mice leads to 
an NK compartment dominated by a subset of 
cells with the following repertoire: 
Ly49A+C+D-G2-I-CD94-. In vitro and in 
vivo studies indicated that Ly49C and Ly49A 

can bind ligands in the H2b haplotype of 
SHIP-/- mice; however, these two receptors 
also bind and transmit inhibitory signals from 
ligands in most or all H2 haplotypes (9-12). 
Therefore, SHIP deficiency leads to an NK 
inhibitory repertoire that is both self-specific 
and promiscuous for other ligands. 

A potential explanation for the repertoire 
disruption seen in SHIP-/- NK cells is that 
SHIP is recruited to certain inhibitory receptors 
expressed by NK cells to oppose intracellular 
signals that mediate survival of specific NK 
subsets expressing these receptors. Indeed, 
SHIP binds the phosphorylated ITIM motif of 
Ly49A in vitro (13). These findings prompted 
us to examine whether SHIP associates in vivo 
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with Ly49 receptors expressed by NK cells (7). 
This analysis revealed that SHIP is associated 
with Ly49A and Ly49C under physiological 

COI 

or 
the 

Fig. 3. SHIP is recruited to NK inhib- 
itory receptors in vivo to oppose A 
activation of Akt. (A) Western blot < 
detection of SHIP in Ly49A and 0 g 
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trol (SHIP). (B) Western blotting for B 
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(C) Western blot analysis of SHIP in n 
Ly49A and Ly49C immunoprecipi- 
tates prepared from lysates of 
SHIP+/+ (+/+) and SHIP-/- (-/-) 
NK cells. (D) Western blot analysis 
of Akt phosphorylation at Thr308 
and total Akt protein in SHIP+/+ and SHIP-/- NK c 
control for equal loading the blot was re-probed w 
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and H2s [A/SW(H-2s)/Sn] (B) BM in 25 
SHIP+/+ or SHIP- - hosts as measured by 0" 
splenic uptake of 125I-dUrd. In (A), *P = 
0.0001 for SHIP-/- versus SHIP+/+, and 
**P = 0.0633 for SHIP-/- versus syngeneic 
control. In (B), *P = 0.0006 for SHIP-/- versus SH 
syngeneic control. (C) Growth of BALB/C donor BM 
pretreatment with blocking antibodies against Ly49C 
mouse serum (NMS) as a source of irrelevant mouse I 
NMS-treated SHIP-/-, P = 0.0476; F(ab')2-treated 
0.4654; Syngeneic control versus NMS-treated SHIP-' 
NMS-treated SHIP+/+, P = 0.0179; F(ab')2-treated S 
0.0022. (D) Growth of p2m-/- BM in SHIP+/+ (C5 
0.2894 for SHIP-/- versus SHIP'/', **P = 0.0001 for 
H- host; T- treatment). (E) Survival plots for SHIP-/ 
mismatched BM grafts. 

nditions (Fig. 3A), but not Ly49G2, Ly49F, Ly49C is SHIP, we analyzed NK lysates from 
Ly49I (Fig. 3B). As further confirmation that SHIP+/+ and SHIP-/- mice (Fig. 3C). This 

protein coprecipitating with Ly49A and analysis detected coprecipitation of SHIP with 
Ly49A and Ly49C only in the SHIP+/+ NK 
lysates, confirming the coprecipitating protein 

- C C 9> IcCp is SHIP. 

u5~ p^ ~~ ^ v^~ a g Because SHIP limits the in vivo survival of 
S+/+ /4- + + - / m myeloid cells by opposing the PI3K/Akt path- 

'"" uz _ way (3, 4), we examined whether Akt is acti- 
vated in SHIP-/- NK cells in vivo based on its 

i%^. 
-+ phosphorylation at Thr308 (14). We found that 

D ~ both Akt phosphorylation and total Akt protein 
i c, levels were significantly increased in SHIP-/- 

C; Ak -P |i:3 NK cells relative to those in SHIP+ NK cells 

%c3h ?>~ g t- 1- S ^' (Fig. 3D) (7). The increase in total Akt levels is 

_S 
/ i r 

lAkt _lA surprising; however, primary B cell activation 

.j| ~ . ......_~ | leads to increased Btk levels in a PI3K-depen- 
'-act~in I 

i 
| dent manner (15). This additional level of reg- 

::iii GAPDHII ulation may further amplify signals from PH 
j' -- 

I 
4^ 

I 
g1 domain-containing kinases (Akt, Btk) that are 

ell lysates. To oa-tubulin| IM1 | recruited to PI(3,4,5)P3. Consistent with the 
,~ith 
antibodies ?activation of the PI3K/Akt pathway in 

SHIP-/- NK cells, we find that Bcl-2 levels 
were increased in SHIP-/- NK cells and the 
p85 subunit of PI3K is recruited to Ly49A and 
Ly49C/I (16). Taken together, these findings 

.-~~~ ~T~ ~suggest the interplay of SHIP and PI3K may 
influence the relative survival of NK subsets 

'*^|~ 1 ^^~~expressing MHC class I receptors capable of 

~~~~- *H ~~~~ * recruiting these enzymes. Interestingly, PI3K is 

*~~~~. *H~ ~ Jrecruited to human KIR and can activate Akt in 
human NK cells (17). Thus, despite their evo- 

'^1- ^1-~~~~ Llutionary divergence in how they bind MHC 

~~~- *^1~ *J~ -class I, murine Ly49 receptors and human KIR 
may recruit SHIP to limit the in vivo survival of 

H2b SHI4- P SHIP SHIP /+SHI2 (D) NK subsets, just as both receptors recruit 
H2b H2d H2d H2d H2d (D) 

- NMS F(ab')2 NMS F(ab')2 (T) SHP-1 to limit NK effector functions (18, 19). 
We speculated that the distortion of the NK 

** repertoire toward inhibitory receptors with li- 
gands in most MHC haplotypes might hamper 
responses to allogeneic targets in SHIP-/- 
mice. Indeed, transgenic mice with enforced 
expression of Ly49A are unable to reject allo- 
geneic bone marrow (BM) grafts from H2d 

- * ~ donors (20). Thus, we examined whether 
SHIP-/- mice on an H2b background could 

H2b SHIP +/i SHIP /- (H) acutely reject fully H2 mismatched BM grafts 
H2b p2m-/- p2m-/- (D) (7). We first analyzed whether SHIP-/- mice 

reject fully allogeneic BM grafts from BALB/C 
SHIP-- mice whose H2d haplotype forms strong inter- 

_ p.07, actions with both Ly49A and Ly49C. Consis- 
SHIP{/+ tent with our hypothesis, we observed that 

BALB/C BM was not rejected by SHIP-/- 
b 1' o o3 40o o o o5 0 mice, whereas their wild-type littermates could 

days(post-BMT) reject equivalent grafts (Fig. 4A). However, the 

failure of SHIP-/- mice to reject H2d grafts IP+/+ and **P = 0.002 for SHIP-/- versus failure of SHIP"" mice to reje H2d grts 
1 in SHIP+/+ or SHIP-/- (H2b) hosts after might also have been due to underrepresenta- 
receptors [F(ab')2] or with 0.2 ml of normal tion of the activating receptor, Ly49D, which 
gG. P-values: F(ab')2-treated SHIP-/- versus also binds H2d. To rule out this possibility, we 
SHIP+/+ versus NMS-treated SHIP+/+, P = tested the ability of SHIP-/- hosts to reject BM 
/-, P = 0.4000; NMS-treated SHIP-/- versus grafts from A/SW(H2s)/Sn mice whose H2s 
;HIP-/- versus F(ab')2-treated SHIP+/+, P = 
HI7B6/J) 

erss Fb')- 
(C57BL6/J) hostsI 

, = haplotype possesses inhibitory ligands for both 
;7BL6/J) or SHIP-/- (C57BL6/J) hosts, P = SHIP-/- versus syngeneic control (D- donor; Ly49A and Ly49C (9), but not activating li- 
- and SHIP'- recipients receiving fully H2 gands for Ly49D. Consistent with our proposed 

mechanism, SHIP-/-, but not SHIP+"' hosts, 

15 MARCH 2002 VOL 295 SCIENCE www.sciencemag.org 

** 

2096 



failed to reject H2s marrow grafts (Fig. 4B). In 
addition, pretreatment of mice with F(ab')2 an- 
tibody fragments that block the Ly49C receptor 
prior to transplant partially restored the ability 
of SHIP-/- hosts to reject BALB/C BM grafts 
(Fig. 4C). These results demonstrate that over- 
representation of an inhibitory receptor contrib- 
utes directly to the compromised ability of 
SHIP-/- hosts to reject allogeneic BM grafts. 
To exclude the possibility that the NK compart- 
ment was simply impaired, we examined the 
ability of SHIP-/- mice to reject MHC class 
I-deficient BM (7) as compared to their wild- 
type littermates (Fig. 4D). SHIP-/- mice 
showed complete rejection of P2m-/- BM 
grafts comparable to that seen in SHIP"+' lit- 
termates. Thus, the NK compartment in 
SHIP-/- hosts was not broadly disabled. 

To determine whether engraftment of MHC 
mismatched BM could lead to severe graft- 
versus-host disease (GVHD), we transplanted a 
cohort of SHIP-/- mice and their SHIP'+ 
littermates with BM from BALB/C mice (7). 
The large majority of SHIP-/- mice survived 
transplant without developing GVHD, whereas 
less than half of the SHIP+`+ mice survived 
(Fig. 4E) (7). These findings suggest a previ- 
ously unappreciated role for host NK cells in 
the initiation of GVHD. Potentially, SHIP-/- 
NK cells fail to produce inflammatory cyto- 
kines (y-IFN, TNF-a) in response to allogeneic 
BM cells, thereby reducing the likelihood of a 
significant GVH reaction by donor T cells. 
Alteratively, other host cell types that contrib- 
ute to GVHD, such as antigen-presenting cells 
(21), could also be altered by SHIP deficiency. 

Although Ly49 inhibitory receptors pre- 
vent inappropriate killing by NK cells, the 
interaction of these receptors with self MHC 
ligands may also elicit signals that promote 
the survival or proliferation of these cells in 
vivo (22). SHIP may counteract these signals 
and thus prevent the expansion of NK subsets 
expressing more than one self-restricted in- 
hibitory receptor. We propose that inhibiting 
SHIP activity prior to BM transplant could 
restrict the NK inhibitory repertoire, such that 
selecting a donor with an appropriate MHC 
ligand, or ligands, might enable engraftment 
in the absence of GVHD. Thus, inhibition of 
SHIP signaling should be explored as a 
means to increase both the efficacy and utility 
of allogeneic BM transplantation. 
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Human leukocyte antigen (HLA)-matched 
allogeneic hematopoietic transplantation 
has revolutionized the treatment of leuke- 
mia, lymphoma, and inherited hematopoi- 
etic stem cell diseases (1). Donor T cells in 
the allograft are vital for promoting en- 
graftment, eradicating malignant cells [the 
graft-versus-leukemia (GVL) effect], and 
reconstituting immunity. Unfortunately, 
they mediate GVHD, which is an attack on 
recipient tissues. GVHD and the global 
immunosuppression needed to prevent or 
treat it underlie the major reasons for trans- 
plant failures: infection and neoplastic re- 
lapse. Furthermore, only 60% of patients 
have matched sibling or unrelated donors, 
and even fewer make it to transplant be- 
cause of the delays due to the donor search 
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and bone marrow harvesting (2). However, 
virtually every patient has a family member 
who is identical for one HLA haplotype and 
fully mismatched for the other, and thus 
could immediately serve as a donor. 

Transplantation across the histocompat- 
ibility barrier has been made possible by 
extensive T cell depletion of the graft to 
help prevent GVHD and transplantation of 
large numbers of hematopoietic stem cells 
to help overcome rejection (2-6). These 
grafts result in the rapid generation of nat- 
ural killer (NK) cells. NK cells are nega- 
tively regulated by major histocompatibili- 
ty complex (MHC) class I-specific inhibi- 
tory receptors (7, 8). In humans, receptors 
termed killer Ig-like receptors (KIRs) rec- 
ognize groups of HLA class I alleles. Al- 
though KIRs and other class-I inhibitory 
receptors (9-11) may be coexpressed by 
NK cells, in any given individual's NK 
repertoire there are cells that express a 
single KIR and are blocked only by a spe- 
cific class I allele group. Missing expres- 
sion of the KIR ligand on mismatched al- 
logeneic cells can therefore trigger NK cell 
alloreactivity (12-17). In hematopoietic 
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T cells that accompany allogeneic hematopoietic grafts for treating leukemia 
enhance engraftment and mediate the graft-versus-leukemia effect. Unfortu- 
nately, alloreactive T cells also cause graft-versus-host disease (GVHD). T cell 
depletion prevents GVHD but increases the risk of graft rejection and leukemic 
relapse. In human transplants, we show that donor-versus-recipient natural 
killer (NK)-cell alloreactivity could eliminate leukemia relapse and graft re- 
jection and protect patients against GVHD. In mice, the pretransplant infusion 
of alloreactive NK cells obviated the need for high-intensity conditioning and 
reduced GVHD. NK cell alloreactivity may thus provide a powerful tool for 
enhancing the efficacy and safety of allogeneic hematopoietic transplantation. 
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