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Demographic Characteristics 

and Population Dynamical 
Patterns of Solitary Birds 

Bernt-Erik Sather,l* Steinar Engen,2 Erik Matthysen3 

In birds and many other animals, there are large interspecific differences in the 
magnitude of annual variation in population size. Using time-series data on pop- 
ulations of solitary bird species, we found that fluctuations in population size of 
solitary birds were affected by the deterministic characteristics of the population 
dynamics as well as the stochastic factors. In species with highly variable popu- 
lations, annual variation in recruitment was positively related to the return rate of 
adults between successive breeding seasons. In stable populations, more recruits 
were found in years with low return rates of breeding adults. This identifies a 
gradient, associated with the position of the species along a "slow-fast" continuum 
of life history variation, from highly variable populations with a recruitment- 
driven demography to stable, strongly density-regulated populations with a 
survival-restricted demography. These results suggest that patterns in avian 
population fluctuations can be predicted from a knowledge of life-history 
characteristics and/or temporal variation in certain demographic traits. 
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One of the challenges in ecology is to identify 
characteristics that can be used to predict 
interspecific differences in patterns of popu- 
lation fluctuations (1). Comparisons covering 
a wide range of taxa have shown a strong 
pattern of covariation of life history traits that 
divide species along a "slow-fast continuum" 
(2-6). Life history characteristics such as 
early onset of reproduction, rapid ontogenetic 
development, and large litter sizes are typical 
for species at one end of this continuum, 
whereas species with low reproductive rates, 
but longer life expectancies, are found at the 
other end. Several hypotheses have been pro- 
posed to explain this covariation among life 
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history traits, e.g., density-dependent r-K se- 
lection (3), adaptive life history responses to 
differences in extrinsic mortality (5), or ad- 
aptations to variation in predictability or vari- 
ability of the habitats (7). Few studies have, 
however, quantitatively examined how char- 
acteristics of the population dynamics are 
related to the species' position along this 
continuum of life history variation; an excep- 
tion was Fowler (8, 9), who showed that the 
pattern of density regulation was related to 
the rate of increase per generation. The pres- 
ence of such patterns will enable character- 
ization of patterns in population fluctuations 
from knowledge of basic demography or life 
history characteristics. Here we used data on 
the fluctuations of solitary bird populations to 
examine stochastic effects on population 
fluctuations. This enables us to quantitatively 
relate patterns in population dynamics to the 
position of the species along the slow-fast 
continuum of life history variation. 

To examine how interspecific variations in 
population dynamical characteristics are affect- 
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ed by the deterministic and the stochastic com- 
ponents of the dynamics, we chose to describe 
the population fluctuations by the nonlinear the- 
ta-logistic model of density regulation (10). This 
model has relatively well-understood statistical 
properties (11, 12) and allows us to model the 
form of density dependence and strength of 
density regulation at K by varying only one 
parameter, 0. For small values of 0, the specific 
growth rate r decreases rapidly with population 
size at lower densities (Fig. 1A). In contrast, for 
large values of 0, a large reduction in r occurs 
when approaching the carrying capacity K. As 
expected from these relations, variation in 0 
strongly influences the dynamical characteris- 
tics of the population model. For a given envi- 
ronmental stochasticity, large fluctuations in 
population size are found when 0 is small (Fig. 
1B), whereas more stable fluctuations occur for 
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larger values of 0 (Fig. 1C). Accordingly, the 
variance of the stationary distribution of the 
population size N decreases with increasing 0 
(Fig. ID). Furthermore, the theta-logistic model 
can also describe, by appropriate choices of 0, 
more commonly used models of density regula- 
tion. For instance, for 0 = 0, we have a Gomp- 
ertz density regulation, 0 = 1 gives the logistic 
model, and for 0 = oo, there is no density 
regulation below K. Thus, by estimating 0, we 
will be able to represent a wide range of varia- 
tion in the expected dynamics of populations. 

With the use of a data set of long-term 
population fluctuations of 13 solitary bird spe- 
cies (Table 1, Fig. 2), an examination of the 
residuals [see (13)] showed that the theta-logis- 
tic model could be fitted to the time series quite 
well, with no significant time delays (lag less 
than 4) in any of the species. A strong covaria- 
tion across species was found between the en- 
vironmental stochasticity and the parameters de- 
scribing the expected dynamics (14). The loga- 
rithm of environmental stochasticity oe de- 
creased with 0 (Fig. 3A; correlation 
coefficient = -0.58, P = 0.036, n = 13) but 
increased with the specific population growth 
rate r, (Fig. 3B; correlation coefficient = 0.61, 
P = 0.026, n = 13). This former relation may, 
however, have been an artifact effect of a neg- 
ative sampling covariance because there was a 
small, but negative, correlation (correlation co- 
efficient < -0.23) between the bootstrap repli- 
cates of 0 and (r2 in all populations. Assuming 
that (In o2, 0) was binormally distributed among tht(nOe 

species, a meta-analysis (15) showed that the 
best fit to the data turned out to be the degener- 
ate binormal with correlation -1, indicating that 
the negative relation in Fig. 3A is not due to a 
sampling effect. Furthermore, 0 increased with 
adult survival rate (correlation coefficient = 

0.60, P = 0.029, n = 13). Thus, a strong pattern 
of covariation is present among the parameters 
describing the population dynamics of solitary 
birds; i.e., density regulation starts to act at 
lower densities (relative to K) in populations 
with high values of r and u than in populations 
with smaller values of those two parameters. 
This is similar to a pattern previously noted in 
mammals (8, 16), as well as over a wide range 
of taxa (9), that density regulation occurs at 
higher relative densities in long-lived species 
with a low specific growth rate than in species 
with higher growth rates. We also notice that 0 
was larger than 7 in several of the species. This 
suggests that the commonly used assumption in 
population ecology of vertebrates (17) of a log- 
linear density regulation (0 = 0) may not always 
be justified. 

There was large interspecific variation in 
the coefficient of variation (with only the past 
15 years of data) in the fluctuations of the 
populations included in the present study 
(Fig. 2), from CV = 0.08 (CV is coefficient 
of variation in population size) in the stable 
Sparrowhawk Accipiter nisus population to 
0.71 in the Cactus Finch Geospiza scandens 
population (Table 1). Population variability 
increased with the environmental stochastic- 

50- 

Time 

z 

50 100 

Time 

0.8- 

0.6 - 

z 
t 0.4- 

0.2 - 

150 

D 

O2 = 0.1 e 

2 
a =0.01 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

0 

Fig. 1. (A) The relation between the specific 
growth r and population size N for different 0 in 
the theta-logistic model (14). (B and C) Ten 
trajectories of the population fluctuations dur- 
ing a period of 200 years in the theta-logistic 
model for 0 = 0.1 (B) and 0 = 1.5 (C), assuming 
that o2 = 0.01. (D) The variance in the station- 
ary distribution of population size (2 ) in rela- 
tion to 0 for C2 = 0.01 and u2 = 0.1. ~~~~0e e 

Table 1. The estimated values (+SD) of the parameters describing the dynamics of the bird populations 
[for sources, see (13)]. CV is the coefficient of variation in population size (calculated during the past 15 
years of study), K is the carrying capacity, 0 describes the form of the density regulation (11), and o- is 
the environmental stochasticity. 

Species CV K 0 C2 

Sparrowhawk 0.08 33.74 + 0.93 2.57 + 0.69 0.009 + 0.011 
Accipiter nisus 
White Stork 0.10 45.14 + 1.84 1.16 ? 0.56 0.006 + 0.002 
Cicconia cicconia 
South Polar Skua 0.15 36.03 + 15.74 1.78 + 2.48 0.022 + 0.025 
Catharacta maccormicki 
Mute Swan 0.22 53.85 + 7.82 1.64 + 0.74 0.088 + 0.032 
Cygnus olor 
Oystercatcher 0.23 65.72 + 15.74 1.79 + 2.48 0.070 + 0.025 
Haematopus ostralegus 
Pied Flycatcher 0.25 286.56 + 39.68 0.50 + 0.46 0.034 + 0.009 
Ficedula hypoleuca 
Blue Tit 0.30 22.18 + 2.02 0.26 + 0.22 0.068 ? 0.017 
Parus caeruleus 
Great Tit 0.21 33.17 + 2.69 0.44 + 0.20 0.066 + 0.016 
Parus major 
Nuthatch 0.33 19.43 ? 2.94 0.47 + 0.37 0.058 ? 0.016 
Sitta europea 
Dipper 0.38 61.72 + 14.89 0.73 + 0.42 0.184 + 0.063 
Cinclus cinclus 
Medium Ground Finch 0.54 387.45 ? 79.96 0.59 + 0.20 0.281 ? 0.100 
Geospiza fortis 
Willow Grouse 0.56 125.09 + 58.22 0.14 + 1.27 0.190 + 0.078 
Lagopus lagopus 
Cactus Finch 0.71 127.64 + 46.13 0.37 + 0.26 0.350 ? 0.134 
Geospiza scandens 
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ity o2 (Fig. 3C, Table 1; correlation coeffi- 
cient = 0.88, P < 0.001, n = 13) but de- 
creased with 0 (Fig. 3D; correlation coeffi- 
cient = -0.66, P = 0.015, n = 13). A partial 
correlation analysis showed that 0 explained 
a significant proportion of the CV even after 

accounting for the effect of o' (partial cor- 
relation = -0.69, df= 10, P = 0.013). Thus, 
the recorded interspecific differences in the 

variability of the bird populations (Table 1, 

Fig. 2) are due to differences in the expected 
dynamics as well as variation in the stochas- 
tic effects (18). 

In birds, large interspecific variation is found 
in the mean as well as the variance of most 

demographic traits (6). How this demographic 
variation translates into population dynamics is, 
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Fig. 2. Population fluctuations in two variable 
species [Great Tit (o) and Dipper (e) and two 
species with smaller coefficients of variation: 
European Sparrowhawk (.) and South Polar 
Skua (L)], For sources, see (13). 
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however, poorly understood. Thus, in our final 

step, we related the described patterns in popu- 
lation dynamics to interspecific differences in 

demographic processes. We characterized the 

demography by the correlation coefficient be- 
tween the annual variation in the number of new 
recruits and the return rate of adults from one 

breeding season to the next. This description of 
recruitment was chosen on the basis of available 
evidence (19), suggesting that many bird popu- 
lations are regulated by territorial behavior. In 
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We conclude that differences in popula- 
tion variability were affected by the deter- 
ministic characteristics of the population dy- 
namics as well as the stochastic factors (Fig. 
3, C and D). These differences were in turn 
related to the position of the species along 
slow-fast continuum of life history variation 
(3, 5, 6) as expressed by r1 (Fig. 3B). The 
relative contribution of the parameters de- 
scribing the expected dynamics and stochas- 
tic factors to the population fluctuations is in 
solitary birds likely to be closely related to 
the type of demographic process, i.e., wheth- 
er it is recruitment-driven or survival-restrict- 
ed (Fig. 4). Fluctuations in the size of recruit- 
ment-driven populations are more strongly 
influenced by environmental stochasticity 
than survival-restricted populations. Conse- 
quently, reliable projections of avian popula- 
tions will require precise estimates and mod- 
eling of stochastic as well as deterministic 
components of the dynamics. On the other 
hand, estimating the form of density depen- 
dence will be more important for predicting 
population fluctuations of long-lived species 
with high values of 0. Reliable estimates of 
the environmental stochasticity (11) as well 
as precise estimates of the carrying capacity 
(21) will require access to long-term time 
series with small sampling errors (29). 
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Plant disease resistance (R) genes trigger innate immune responses upon patho- 
gen attack. RAR1 is an early convergence point in a signaling pathway engaged 
by multiple R genes. Here, we show that RAR1 interacts with plant orthologs 
of the yeast protein SGT1, an essential regulator in the cell cycle. Silencing the 
barley gene Sgtl reveals its role in R gene-triggered, Rarl-dependent disease 
resistance. SGT1 associates with SKP1 and CUL1, subunits of the SCF (Skpl- 
Cullin-F-box) ubiquitin ligase complex. Furthermore, the RAR1-SGT1 complex 
also interacts with two COP9 signalosome components. The interactions among 
RAR1, SGT1, SCF, and signalosome subunits indicate a link between disease 
resistance and ubiquitination. 
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ponents in pathogen perception; R genes acti- 
vate a battery of defense reactions, collectively 
called the hypersensitive response (HR) (1). A 
number of R genes from various plant species 
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(2). Although different R genes confer resis- 
tance to a variety of pests, including bacteria, 
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gene products share common structural mod- 
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