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Time courses of translocation of fluorescently conjugated proteins to the 
plasma membrane were simultaneously measured in thousands of individual rat 
basophilic leukemia cells. We found that the C2 domain-a calcium-sensing, 
lipid-binding protein module that is an essential regulator of protein kinase C 
and numerous other proteins-targeted proteins to the plasma membrane 
transiently if calcium was released from internal stores, and persistently in 
response to entry of extracellular calcium across the plasma membrane. The C2 
domain translocation time courses of stimulated cells clustered into only two 
primary modes. Hence, the reversible recruitment of families of signaling pro- 
teins from one cellular compartment to another is a rapid bifurcation mech- 
anism for inducing discrete states of cellular signaling networks. 
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Studies of the dynamic behavior of signaling 
systems require the measurement of signaling 
time courses in individual living cells, be- 
cause critical cell-to-cell differences are lost 
in averaged bulk cell measurements (1, 2). 
One of the most prominent dynamic cell sig- 
naling events is the receptor-triggered trans- 
location of signaling proteins with SH2 (Src 
homology 2), PH (pleckstrin homology), C1, 
C2, and related domains from the cytosol to 
the plasma membrane (3, 4). In particular, 
calcium-sensing C2 domains that exist in ki- 
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nases, lipases, and many other enzymes and 
regulatory proteins (5, 6) are intriguing ex- 
amples of translocation domains because they 
target signaling proteins to lipid membranes 
in response to ubiquitously triggered Ca24 
signals (7, 8). 

We developed an imaging technology based 
on large-area evanescent wave excitation to 
simultaneously measure the plasma membrane 
translocation of the C2 domain from protein 
kinase Cy (PKCy) fused to yellow fluorescent 
protein (YFP) [YFP-C2 domain] (9) in thou- 
sands of living rat basophilic leukemia (RBL) 
cells. In this evanescent wave single-cell array 
technology (E-SCAT; Fig. 1, A and B) [Web 
table 1 and Web fig. 1 (10)], cells are grown on 
a thin glass plate that serves as a uniform guide 
for laser light with an evanescent field that 
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Fig. 1. Simultaneous measurement of plasma membrane translocation events in thousands of 
individual cells. (A) Schematic view of the E-SCAT system. In this method, an evanescent field is 
generated above a large surface area by coupling a laser into the angled edge (15?) of a glass plate 
200 p.m thick (10, 29). A high numerical aperture projection system was built to image a 7 mm by 
9 mm region at the glass-water interface onto a CCD camera (30). Up to -100,000 cells can be 
plated in this region. (B) A 10% subregion of an E-SCAT image used for translocation time course 
analysis [full image shown in Web fig. 3 (10)]. Each bright spot reflects a transfected RBL cell whose 
surface plasma membrane is excited by evanescent wave excitation. Scale bar, 1 mm. (C) 
Representative time courses of relative fluorescence intensity reflecting three single-cell translo- 
cation events in RBL cells transfected with YFP-C2 domain after addition of a submaximal 
concentration of PAF (final concentration 1 nM). 
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penetrates less than 100 nm above the glass 
surface (11, 12). Because fluorescent molecules 
at the plasma membrane near the glass surface 
are selectively excited over those in the cytosol, 
the translocation of signaling proteins to the 
plasma membrane in response to the activation 
of receptors on the cell surface can be measured 
as increases in local fluorescence intensity over 
time. Figure 1C shows translocation time cours- 
es measured, after the addition of 1 nM platelet 
activating factor (PAF), in RBL cells trans- 
fected with YFP-C2 domain (9). Control ex- 
periments with cells expressing YFP alone 
showed no increases in the fluorescent signals. 

We developed software tools (13) to ana- 
lyze the fluorescence intensity changes over 
time in each cell transfected with the YFP-C2 
domain construct and measured translocation 
time courses at different concentrations of PAF. 
Pattern analysis showed that the translocation in 
individual cells can be described by one of two 
responses: a transient response in which the C2 
domains translocated to the plasma membrane 
and rapidly dissociated again after 5.5 ? 2 s 
(full width at half-maximum + SD; N = 6102 

transients), and a persistent response in which 
the domain translocated and remained at the 
plasma membrane for more than 30 s (Fig. 2A). 
Multiple cell recordings were overlaid on a 
surface plot for each range of PAF concentra- 
tions. As depicted, the z axis is proportional to 
the number of cells with a particular normalized 
translocation signal (y axis) at a specified time 
(x axis). The fluorescent signal from 10 s before 
to 30 s after the peak translocation was normal- 
ized with the peak translocation set to 1. The 
time courses at PAF concentrations below 1 nM 
consisted primarily of transient responses, and 
those at concentrations above 10 nM consisted 
primarily of persistent responses, whereas inter- 
mediate agonist concentrations triggered a mix- 
ture of discrete transient and persistent respons- 
es (Fig. 2A). Only a small number of measured 
responses were outside these two principal re- 
sponse patterns. 

About half of the C2 domains that have 
been characterized biochemically bind to lip- 
id membranes in the presence of two or three 
Ca2+ ions (7, 14, 15), and membrane trans- 
location events have been reported to be pre- 
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plots were generated by 100 x 100 binning and 12 x 12 low-pass filtering. (B) C2 domain 
translocation events triggered by PAF in the absence of extracellular Ca2+ (extracellular addition 
of 2.5 mM Mg-EGTA). The responses at 300 pM PAF in the absence of extracellular Ca2+ (left panel) 
had spikes indistinguishable from those seen in experiments at 100 to 500 pM PAF in the presence 
of extracellular Ca2+. However, the C2 domain translocation responses at a PAF concentration of 
10 nM were persistent in the presence of extracellular Ca2+ (center panel) and transient without 
extracellular Ca2+ (right panel), suggesting that the persistent localization of C2 domains requires 
Ca2+ influx. Ionomycin and calcium were added at the end to calibrate the translocation response. 
(C) Transient versus persistent plasma membrane localization of C2 domains in the presence of 
thapsigargin, a blocker of intracellular Ca2+ pumps. Left panel: Addition of 5 PJM thapsigargin 
triggers persistent plasma membrane localization. Center panel: In the absence of extracellular 
Ca2+, the thapsigargin-induced translocation has only a small amplitude and is transient. Right 
panel: Addition of Ca2+ to cells pretreated with thapsigargin in the absence of extracellular Ca2+ 
triggers persistent C2 domain translocation. 

ceded by an increase in the concentration of 
intracellular free Ca2+ ([Ca2+]i) (16). A mu- 
tation of Asp187 to Asn'87 (17) that reduces 
Ca2+-mediated C2 domain membrane bind- 
ing in vitro (18) also reduced the PAF-in- 
duced C2 domain translocation; this result is 
consistent with a direct role of Ca2+ in me- 
diating C2 domain translocation. The in- 
crease in fluorescence after application of 
100 nM PAF was 29.3 + 2.4% (mean + SE; 
N = 615 cells) for the mutant C2 domain, 
compared to 240.7 + 3.1% for the wild type 
(N = 1900 cells). 

Cytosolic Ca2+ signals can be triggered by 
Ca2+ release from intracellular stores or by 
Ca2+ influx across the plasma membrane (19), 
so we tested whether the two sources of Ca2+ 
might generate the observed translocation pat- 
terns. Cells exposed to 300 pM PAF triggered 
transient translocation events that were unaf- 
fected by the removal of extracellular Ca2+ 
(N = 810 of 815 cells; Fig. 2B, left), which 
suggests that the transient response pattern 
largely stems from release of Ca2+ from intra- 
cellular stores. In cells exposed to 10 nM PAF, 
the persistent translocation of C2 domains ob- 
served in the presence of extracellular Ca2+ 
(N = 2579 of 2611 cells; Fig. 2B, center) was 
abolished when extracellular Ca2+ was re- 
moved (N = 1835 of 1835 cells; Fig. 2B, right). 
The C2 domains returned to the cytosol in less 
than 1 min. 

Addition of thapsigargin, which blocks cal- 
cium pumps in intracellular stores (20), led to 
persistent C2 domain translocation in the pres- 
ence of extracellular Ca2+ (N = 700 of 700 
cells; Fig. 2C, left) and only a transient local- 
ization in the absence of extracellular Ca2+ 
(N = 1321 of 1365 cells; Fig. 2C, center). This 
result is consistent with a requirement of Ca2+ 
influx for persistent C2 domain plasma mem- 
brane localization. Addition of extracellular 
Ca2+ to cells pretreated with thapsigargin in the 
absence of extracellular Ca2+ induced a persis- 
tent C2 domain plasma membrane localization 
(N = 1365 of 1365 cells; Fig. 2C, right). In 
control measurements, addition of 100 nM PAF 
to cells pretreated with thapsigargin in the ab- 
sence of extracellular Ca2+ did not elicit a 
translocation response (21), which suggests that 
PAF does not activate alternative Ca2+-inde- 
pendent translocation pathways. Thus, although 
calcium release triggers the initial membrane 
translocation, calcium influx appears to be the 
principal driving force for retaining C2 domains 
at the plasma membrane. 

Many signaling processes exhibit first- 
order kinetics with effective activities propor- 
tional to both the duration and the amplitude 
of a signal (22, 23). In contrast, signaling 
processes that desensitize respond selectively 
to rapid signal increases while rejecting slow- 
er increases (24). These findings suggest that 
the integral of a signal over time and the rate 
of increase of a signal are two important 
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2-s interval normalized to the maximal translocation amplitude after ionomycin addition. The 
integrated C2 domain membrane localization (x axis) was measured by integrating the fluorescence 
signal from the initial translocation until the time when C2 domains dissociated 85% away from 
the plasma membrane and was normalized by the product of the maxima[ ionomycin-induced 
translocation amplitude and the duration of the measurement (270 s). The four surface plots show 
the activity distributions for increasing agonist concentration: 0.01 nM (N = 510), 0.5 nM (N = 
1496), 2 nM (N = 1673), and 100 nM (N = 2393). The surface plots were generated by 80 x 80 
binning and 8 x 8 low-pass filtering. (B) Population-averaged rate and integrated translocation 
parameters measured at different PAF concentrations. The two overlaid graphs show the PAF 
concentration dependence of the averaged maximal translocation rate (blue downward triangles) 
and the averaged integrated activity (red upward triangles). Each data point in both of the graphs 
represents a separate experiment with 500 to 3000 cells. 

parameters for downstream signaling. We de- 
termined. whether the two observed C2 do- 
main translocation patterns could selectively 
activate different signaling processes by com- 
paring for each cell the integrated activity and 
the maximal rate of translocation. Figure 3A 
shows surface plots for different PAF con- 
centrations of the number of cells (z axis) 
with a given maximal C2 domain transloca- 
tion rate (y axis) and a given integrated plas- 
ma membrane localization (x axis). In addi- 
tion to a basal state that is visible in the lower 
comer of the left and center panels in the top 
row of Fig. 3A, this analysis revealed two 
distinct signaling modes that appear as sepa- 
rated hills in the surface plot (Fig. 3A, top 
row, right): (i) a "differentiating" signaling 
mode with a maximal C2 domain transloca- 
tion rate and a minimal integrated activity 
(Fig. 3A, top row, center and right), and (ii) 
an "integrating" signaling mode with the 
same translocation rate but with integrated 
activity increased by a factor of 10 to 30 (Fig. 
3A, top row, right, and bottom left). Analysis 
of the population averages of these parame- 
ters shows that maximal translocation rates 
were triggered at low PAF concentrations, 
whereas significant integrated activities were 
triggered over a narrow range of higher PAF 
concentrations (Fig. 3B). 

Our study introduces a broadly applicable 
technology (E-SCAT) for measuring the 
translocation of signaling proteins and do- 
mains in large numbers of individual cells. 

Thus far, we have measured significant in- 
creases in signal amplitude attributable to the 
receptor-triggered membrane translocation of 
cyan fluorescent protein (CFP)- and YFP- 
conjugated C2, PH, and C1 domains as well 
as of different PKC isoforms [Web fig. 2 
(10)]. Using this technology, we found that 
the receptor-triggered translocation of C2 do- 
mains follows one of two discrete temporal 
patterns that depend on calcium release for 
transient membrane localization and calcium 
influx for persistent localization. Because 
Ca2+-sensitive C2 domains are common reg- 
ulatory motifs of diverse signaling proteins, 
each of these translocation responses can me- 
diate a coordinated activation of different 
downstream targets inducing either a differ- 
entiating or an integrating signaling mode. 
This indicates that the selection between par- 
ticular signaling responses can occur soon 
after receptor stimulation, before transcrip- 
tional activation. Our study suggests that 
measurements of translocation time courses 
in large cell numbers and the identification of 
discrete response patterns can be used as a 
general strategy to identify modes in dynamic 
signaling networks and to reduce network 
complexity. 
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