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of water, whereas the pure MgO-periclase co- 
existing with MgSiO3-perovskite and melt can 
contain only -2 ppm H2O (16). Magnesiowiis- 
tite is likely to include some Fe3+ (27). The 
coupled substitution 2M2+ = Fe3+ + H+ may 
be necessary to incorporate hydrogen in this 
phase. Ca-perovskite is a major carrier of trace 
elements in the lower mantle (28). Our study 
shows that Ca-perovskite has a higher solubility 
of H20 than the other two phases. However, the 
analyses were made after Ca-perovskite be- 
came amorphous at ambient pressure, so further 
investigation on its H20 solubility with a per- 
ovskite structure is needed. 

Our results suggest that the lower mantle 
can potentially store considerable amounts of 
water. A lower mantle, consisting of 79 wt% 
Mg-perovskite, 16 wt% magnesiowiistite, and 5 
wt% Ca-perovskite (11), can contain 0.2 wt% 
H20. When this capacity is integrated over the 
mass of the lower mantle, the total mass of 
water is -5 times that of oceans. This amount 
is comparable to that in the transition zone (-6 
times more than the oceans), where 3.3 and 2.2 
wt% H20 can be included in wadsleyite and 
ringwoodite, respectively (5, 7). The consider- 
able amount of hydrogen can be stored in deep 
reservoirs such as the transition zone, lower 
mantle, and core (5-8). 

The high solubility of H20 in representative 
lower mantle minerals also has implications for 
the rheological properties of the lower mantle 
(29). The presence of water in a crystal structure 
can reduce the strength of a mineral and control 
creep mechanisms (2, 6). The water may be 
transported into the lower mantle by the subduc- 
tion of hydrated slabs, and may be released upon 
decomposition of DHMS phases such as phase 
D, which contains -10 wt% H20, around 1200 
km depth (9). Hydrogen may be also added to 
the lower mantle from the hydrogen-saturated 
outer core as H20 (8). Lower mantle minerals 
would absorb this released H20 and would be 
considerably softened due to the relaxation 
around the defects. Accordingly, flow of mate- 
rial would be expected along the down-going 
slabs and along the bottom of the mantle. 
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Repeated and Sudden Reversals 

of the Dipole Field Generated 

by a Spherical Dynamo Action 

Jinghong Li,'* Tetsuya Sato,' 2t Akira Kageyama1'2 

Using long-duration, three-dimensional magnetohydrodynamic simulation, we 
found that the magnetic dipole field generated by a dynamo action in a rotating 
spherical shell repeatedly reverses its polarity at irregular intervals (that is, 
punctuated reversal). Although the total convection energy and magnetic en- 
ergy alternate between a high-energy state and a low-energy state, the dipole 
polarity can reverse only at high-energy states where the north-south sym- 
metry of the convection pattern is broken and the columnar vortex structure 
becomes vulnerable. Another attractive finding is that the quadrupole mode 
grows, exceeding the dipole mode before the reversal; this may help to explain 
how Earth's magnetic field reverses. 
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Earth's magnetic field is believed to be gen- 
erated by dynamo action in a rotating electri- 
cally conducting fluid (1-3). The magnetic 
field of Earth is dipole-dominated and sud- 
denly reverses its polarity at irregular inter- 
vals (4, 5). 
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simulations in recent years have succeeded in 
demonstrating the self-excitation of the dipole 
field (6-8). In the Glatzmaier-Roberts simula- 
tion (6), reversal of the generated dipole field 
was also observed. On the other hand, the 
Kageyama-Sato model obtained a flip-flop tran- 
sition of the total magnetic and convection en- 
ergies, which was associated with the reversal of 
the dipole field (9). Glatzmaier et al. (10) stud- 
ied the effects of nonuniformity of heat flux 
pattern on the reversal to find the role of the 
nonuniform heat flux. Coe et al. (11) described 
the evolution of the morphology and/or spectral 
energy of simulated magnetic fields during re- 
versals. Although the previous reversal studies 
have succeeded in demonstrating the occurrence 
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while the reversal is developing. These re- 
sults suggest that the magnetic field reversal 
is correlated with the growth and dominance 
of the quadrupole mode. We note that the 
Glatzmaier-Roberts simulation (10) also ob- 
served tendencies similar to this. The preces- 
sion of the tip of the dipole moment around 
the rotation axis (Fig. 1D) shows that the 
precession is, as a whole, eastward at the 
high-energy state and westward at the low- 
energy state, but that there seems to be no 
correlation with the dipole reversal. The mag- 
netic field configurations just before and after 
one of the dipole reversals (Fig. 3) shows the 
dipole polarity change in the range of 6 to 16 
diffusion times. 

The thermal convection in the rapidly ro- 
tating spherical shell takes the form of colum- 
nar cells which are parallel to the rotation 
axis (8). The fluid in a cyclonic (anticyclonic) 
column rotates in the same (opposite) direc- 
tion as the rotation of the shell. The flow in a 
cyclonic (anticyclonic) column is directed to- 
ward (away from) the equatorial plane. The 
magnetic field structure inside the shell is 
complicated; generally, the magnetic field 
lines spiral around the convection columns. 
The magnetic field pattern at the outer bound- 
ary moves eastward at high-energy states and 
westward at low-energy states. 

At low-energy states, the thermal convec- 
tion motion does not change very much, and 
seven pairs of convection columns simply 
drift in longitude with fast speed (about 0.5% 
of the angular velocity of rotation). The fluid 
flow is generally symmetric about the equa- 
torial plane (i.e., north-south symmetry) and 
there are no flows across the equatorial plane 
(see the left two panels of top two rows in 
Fig. 4). The magnetic field is always domi- 
nantly dipolar and the dipole moment suffers 
only a small fluctuation in magnitude (less 
than 10%) and direction. 

In contrast, at high-energy states, the 
number of convection column pairs (i.e., cy- 
clone and anticyclone) is not fixed, changing 
among five to seven pairs. Meanwhile, strong 
trans-equatorial flows, which are comparable 
to or even greater than the mean poloidal 
flow, develop and the symmetry of the con- 
vection pattern around the equatorial plane is 
broken (see the left two panels of bottom two 
rows in Fig. 4). It is this break of north-south 
symmetry in the flow pattern that drives the 
turn-over of the polarity of dipole. 

The properties of magnetic field at high- 
energy states in the equatorial and meridian 
planes show that the axial magnetic fields 
across the equatorial plane are mainly con- 
centrated in the anticyclone columns. Also, it 
should be noted that the toroidal contour 
pattern of the longitudinally averaged mag- 
netic field in the meridian cross section is 
reversed as the dipole polarity is reversed 
(compare the upper two rows of the righthand 
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Fig. 3. Two snapshots of 
the generated magnetic 
fields before and after a 
reversal. The top panel 
indicates the magnified 
time evolution of the di- 
pole polarity in the 
range of 6 to 16 diffu- 
sion times. The middle 
panels show the color- 
coded representation of 
the radial component at 
the outer boundary of 
the dynamo shell (red 
directed outward and 
blue inward). The bot- 
tom panels show the 
magnetic field lines ex- 
tending out of the shell 
before (time = 11.0) 
and after (time = 12.0) 
the reversal around 
time = 11.5, where the 
direction of a magnetic 
field line is color-coded 
by red to blue for out- 
ward and inward direc- 
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Fig. 4. The contour maps of axial components of fluid velocity and magnetic field in the equatorial 
plane are shown on the first and third columns, where solid lines represent south-directed and 
dashed ones north-directed. Shown on the second and fourth columns are the longitudinally 
averaged fluid velocity and magnetic field vector in the meridian cross section, where the left half 
represents the poloidal component and the right half the contour map of the toroidal component 
(solid lines represent east-directed and dashed ones west-directed). Rows (A) through (D) corre- 
spond to the times indicated in Figs. 1 and 2. Namely, the states (A) and (D) represent the normal 
polarity and those of (B) and (C) the reversal polarity. 
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side in Fig. 4, and also the lower two rows in 
Fig. 4). 

The energy state, both magnetic and kinetic, 
of a magnetohydrodynamic dynamo in a rotat- 
ing spherical shell has two local minima, name- 
ly, the dynamo system can alternately take a 
high- or low-energy state. More specifically, 
the system flip-flops in an irregular fashion 
between a high- and a low-energy state. A 
reversal occurs only in a high-energy state and 
only if the high-energy state is maintained for a 
certain period. More interestingly, there appears 
a rather gradual growth phase of the quadrupole 
mode before a reversal, and a reversal occurs 
when the magnitude of the quadrupole mode 
exceeds that of the dipole at the outer boundary. 
Note, however, that when an observer measures 
the quadrupole component on Earth's surface, 
this is not the case because the quadrupole 
mode amplitude decreases much faster than that 
of the dipole as the radial distance increases. 

The most important discovery of these 
simulations is the generation of trans-equato- 
rial flows in a spherical system that makes the 
convection pattern vulnerable and the whole 
system marginally stable. Reversal of the di- 
pole magnetic field arises with a good corre- 
lation with the generation of trans-equatorial 
flows. We remind here that Sarson and Jone 
(12) and Sarson (13) have made an argument 
on the importance of nonaxisymmetric poloi- 
dal flow on the reversal. 

The necessary conditions for the occur- 
rence of a dipole reversal obtained in our 
model are the following: (i) The system is in 
a high-energy state, (ii) the high-energy state 
lasts for a certain period, (iii) the quadrupole 
mode is on the average in a growing phase, 
and (iv) the magnitude of the quadrupole 
mode exceeds that of the dipole mode on the 
outer boundary. The last two conditions are 
consistent with the suggested correlations be- 
tween field strengths and reversals (14). Al- 
though the parameter region of the real Earth 
is far from the present one, we believe that 
the core mechanism of the dipole reversal 
must be a universal one, as is often the case 
for most phenomena in nature, and that the 
elementary reversal mechanism could be the 
generation of the north-south asymmetric 
flow. This is because the flow pattern is the 
only direct agency related to the magnetic 
field pattern. Furthermore, other simulation 
runs have disclosed that the energy state al- 
ways stays in a high-energy state for larger 
Rayleigh numbers. In Earth's case, the Ray- 
leigh number is much higher than those of 
our simulation examples. Thus, it is quite 
likely that reversal can take place in the real 
Earth. 
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Antarctic krill (Euphausia superba) is a key 
species in the Southern Ocean and depends 
on sea-ice algae for food at some stages of its 
life cycle (1). Interannual changes in the re- 
cruitment success of krill have been linked to 
oscillations in sea-ice extent, and krill abun- 
dance may decline following successive win- 
ters of reduced ice coverage (2). Reductions 
in krill abundance have major consequences 
throughout the Southern Ocean ecosystem (3) 
and affect commercial fisheries (4), and it is 
essential to understand interactions of krill 
with sea ice. In summer, the marginal ice 
zone (MIZ), where melting sea ice is broken 
into floes by waves and swell, is a region of 
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elevated primary productivity (5). Phyto- 
plankton blooms develop in the upper water 
column that is stabilized by melt-water, and 
krill may feed on these blooms. It has long 
been presumed that krill abundance is elevat- 
ed along sea-ice edges because some krill- 
eating whales aggregate there (6). However, 
although krill swarms have been seen in open 
water between sea-ice floes (7) and discrete 
spot-measurements have detected krill under 
ice (8-11), there is a paucity of quantitative 
information on the mesoscale distribution and 
abundance of krill beneath ice because of 
difficulties associated with sampling there. 
Limitations with conventional methods have 
prevented continuous observations beneath 
ice over the scale necessary to assess krill 
robustly: ice-breaking ships disrupt the sea- 
ice habitat, and scuba divers and remotely 
operated vehicles suffer restricted operating 
ranges. Evidence for krill-sea ice links thus 
remains largely circumstantial (2). Here, we 
report acoustic survey data gathered along 
replicated line-transects by the autonomous 
underwater vehicle (AUV) Autosub-2 (12) 
during its first missions beneath sea ice. 
These data enable krill density and distribu- 
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We surveyed Antarctic krill (Euphausia superba) under sea ice using the au- 
tonomous underwater vehicle Autosub-2. Krill were concentrated within a band 
under ice between 1 and 13 kilometers south of the ice edge. Within this band, 
krill densities were fivefold greater than that of open water. The under-ice 
environment has long been considered an important habitat for krill, but 
sampling difficulties have previously prevented direct observations under ice 
over the scale necessary for robust krill density estimation. Autosub-2 enabled 
us to make continuous high-resolution measurements of krill density under ice 
reaching 27 kilometers beyond the ice edge. 
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