
cating that many VI neurons project to both pale 
and thick stripes (Fig. 3, F to I). By contrast, 
paired tracer injections (n = 2) in adjacent thin 
and pale stripes revealed virtually no double- 
labeled cells. Thus, the V1 projections from 
interpatches to pale and thick stripes arise from 
a common source, although most neurons do 
project exclusively to either a pale stripe or a 
thick stripe. 

The V2 tracer injections revealed novel pro- 
jections from other cortical layers. Layer 4A is 
the thinnest layer in V1 (<50 ,Jm thick), re- 
ceives a direct projection from the parvocellular 
system, and has a characteristic cytochrome ox- 
idase honeycomb pattern (26). It sent a dual 
pattern of projections to V2. Thick and pale 
stripe injections produced 4A label in interpatch 
columns [Web fig. 1A (27)]. Thin stripe injec- 
tions resulted in 4A label that coincided with 
patch columns [Web fig. 1B (27)]. This projec- 
tion from layer 4A adds a second potential 
disynaptic route from the geniculate to V2: par- 
vocellular -- layer 4A -> V2, in addition to the 
known koniocellular -- patches -> V2 pathway 
(28). Injections in all stripes labeled numerous 
large neurons, often Meynert cells, near the 
layer 5/6 border. These cells were distributed 
indiscriminately with respect to patches and in- 
terpatches. 

These findings recast the Vl-to-V2 pathway. 
Previous studies found projections arising from 
only single layers, organized in a tripartite fash- 
ion: layer 2/3 patches -> thin stripes, layer 2/3 
interpatches -> pale stripes, and layer 4B -> 
thick stripes (6, 7). It has subsequently been 
recognized that considerable mixing of magno, 
parvo, and konio geniculate channels occurs 
within V1 (29). However, the apparent exis- 
tence of three distinct, partitioned VI projec- 
tions to thick, pale, and thin stripes implied that 
three channels-dominated by magno, parvo, 
and konio inputs-survived after processing 
within V1. We now show that thick, thin and 
pale stripes all receive projections from the 
same VI layers: heaviest from layer 2/3 and less 
from layers 4A, 4B, and 5/6. The dominant 
theme is not tripartite, but bipartite segregation 
defined by cytochrome oxidase columns: patch- 
es -- thin stripes, and interpatches -> pale and 
thick stripes (Fig. 4). These anatomical data 
explain the relatively poor segregation of recep- 
tive field properties in pale and thick stripes 
found by some investigators (30-32). Our re- 
sults provide a new connectional foundation for 
the cortical hierarchy of visual areas (16, 33). 
They suggest a rich intermingling of form, col- 
or, and motion signals between the streams 
bound for the dorsal "where" and ventral "what" 
pathways (17, 34). 
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Placebo and Opioid Analgesia- 
Imaging a Shared Neuronal 

Network 

Predrag Petrovic,'1 Eija Kalso,2 Karl Magnus Petersson,1 Martin Ingvarl* 

It has been suggested that placebo analgesia involves both higher order cognitive 
networks and endogenous opioid systems. The rostral anterior cingulate cortex 
(rACC) and the brainstem are implicated in opioid analgesia, suggesting a similar 
role for these structures in placebo analgesia. Using positron emission tomography, 
we confirmed that both opioid and placebo analgesia are associated with increased 
activity in the rACC. We also observed a covariation between the activity in the 
rACC and the brainstem during both opioid and placebo analgesia, but not during 
the pain-only condition. These findings indicate a related neural mechanism in 
placebo and opioid analgesia. 

Placebo analgesia is an important component least some aspects of placebo analgesia are 
in pain management (I), although the basic dependent upon endogenous opioid systems 
mechanisms are still poorly understood. At (1-3) because the effect may be partly abol- 

Placebo and Opioid Analgesia- 
Imaging a Shared Neuronal 

Network 

Predrag Petrovic,'1 Eija Kalso,2 Karl Magnus Petersson,1 Martin Ingvarl* 

It has been suggested that placebo analgesia involves both higher order cognitive 
networks and endogenous opioid systems. The rostral anterior cingulate cortex 
(rACC) and the brainstem are implicated in opioid analgesia, suggesting a similar 
role for these structures in placebo analgesia. Using positron emission tomography, 
we confirmed that both opioid and placebo analgesia are associated with increased 
activity in the rACC. We also observed a covariation between the activity in the 
rACC and the brainstem during both opioid and placebo analgesia, but not during 
the pain-only condition. These findings indicate a related neural mechanism in 
placebo and opioid analgesia. 

Placebo analgesia is an important component least some aspects of placebo analgesia are 
in pain management (I), although the basic dependent upon endogenous opioid systems 
mechanisms are still poorly understood. At (1-3) because the effect may be partly abol- 

www.sciencemag.org SCIENCE VOL 295 1 MARCH 2002 www.sciencemag.org SCIENCE VOL 295 1 MARCH 2002 1737 1737 



REPORTS 

ished by the opioid antagonist naloxone (2). 
Therefore, the underlying neurophysiology of 
opioid-dependent placebo analgesia can be elu- 
cidated by studying similarities and differences 
in the function of the opioid and placebo sys- 
tems in the brain. The opioid system consists of 
a well-studied subsystem in the brainstem and a 
less well elaborated cortical opioid-dependent 
network (4, 5). This system appears to be a 
likely candidate for the mediation of opioid- 
dependent placebo analgesia. The importance 
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of the ACC in opioid effects has been suggested 
in several receptor-imaging studies of the brain 
(6-10), activation studies of opioid compounds 
(11-14), and theoretical frameworks of opioid 
analgesia (15). The rostral ACC (rACC)/ven- 
tromedial prefrontal cortex has been suggested 
as an important region in opioid analgesia and 
in other forms of pain modulation (16-26), 
which may suggest a similar involvement of 
higher order control of opioid-dependent place- 
bo analgesia. 

We compared the analgesic effects of a 
placebo treatment and a rapidly acting opioid 
(remifentanil) [supplement A (27)] in a stan- 
dard pain-stimulus paradigm (28). We used 
six different conditions in the study: heat pain 
and opioid treatment (POP), nonpainful 
warm stimulation and opioid treatment 
(WOP), heat pain and placebo treatment 

Fig. 1. (A) Increased A 
activity was observed 
in the right (cross) and s 
Left insula (left panel, 
horizontal section), in 4 
the thalamus (left 3 
panel), and in the cau- 2E dal ACC (right panel, 
sagittal section) dur- 
ing the main effect of 0 
pain [(POP + PPL + 
P)-(WOP + WPL + 
W)]. (B) The activa- B C 
tion was most pro- 
nounced in the rACC 
during the main effect 
of opioids [(POP + 6 
WOP)-(P + W)]. In- 
creased activity is ap- 
parent in the lower 
pons. (C) Increased ac- 
tivity in the same area o 
of the rACC was also 
seen in the placebo effect during pain (PPL-P). The activations are 
template. The activation threshold is at P = 0.005. 

Fig. 2. (A) The main A Opioid network B PlI 
effect of remifentanil 
[(POP + WOP)-(P + ':::::+ : -" :' '" 

- '^ ........ 
W)] showed increased: : 
activity bilaterally in 
the rostral and caudal -. 
ACC (extending into 
the ventromedial pre- " e: . ; 
frontal cortex), insula, :'.- !.-: 

: 

orbitofrontal cortex 
(extending into the -' "' 

temporopolar areas), '^!i.. J.. 
and lower pons. The 
effect was widespread 
in the rACC and bilat- l.7t 
erally in'the anterior - - . : ............ 
insula. (B) The placebo 
effect during pain (PPL-P) showed increased activity in the orbito- 
frontal regions bilaterally (most extensively in the right hemisphere) 
and in the contralateral rACC. (C) To observe the overlapping acti- 
vation in the two different conditions, we used the placebo analgesia 
effect (activation threshold at P = 0.001) and masked the main effect 
of remifentanil (same activation threshold). Several of the orbitofron- 
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(PPL), nonpainful warm stimulation and pla- 
cebo treatment (WPL), heat pain only (P), 
and nonpainful warm stimulation only (W). 
We studied concomitant behavioral responses 
and regional cerebral blood flow (rCBF) us- 
ing positron emission tomography (PET) (29, 
30) and compared the functional anatomy of 
the placebo analgesic response with that of 
the opioid response. We were especially in- 
terested in whether placebo analgesia and 
opioid effects induce a similar rCBF response 
in the rACC and the brainstem. 

Comparison of scans in the pain condi- 
tions and in the warm conditions showed 
increased activity in the contralateral thala- 
mus, in the insula bilaterally, and in the cau- 
dal ACC [Web table 1 (27) and Fig. 1A], all 
regions that have shown increased activity in 
previous imaging studies of pain (31). The 
opioid agonist remifentanil activated the ce- 
rebral network [Web table 2 (27) and Figs. 
1B and 2A], which has been described pre- 
viously in opioid receptor binding (6-9) and 
in rCBF studies (11-14). One of the major 
increases in rCBF was observed in the ACC 
and especially in the rACC. We also observed 
an increased activity in the lower brainstem. 
The subjects rated the pain intensity lower 
during POP compared with P in every exper- 
imental block [Web fig. 1 (27)]. The rCBF 
analysis showed that the insula, one of the 
major regions involved in pain processing, 
had an attenuated rCBF response bilaterally 
during POP-WOP as compared with P-W 
[Web table 2 (27)]. 

Although there was high interindividual 
variability in placebo ratings, most subjects de- 
creased their pain intensity rating during PPL as 
compared with the P condition [Web fig. 1 
(27)]. Recent experiments have revealed differ- 
ent types of placebo analgesia and indicate that 
some are dependent upon opioid systems (32, 
33). Placebo responses were induced in subjects 

C Placebo analgesia network 
masked with the opioid network 

^ i ;.._ ,,, 

.... 
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.... 

tal regions in the right hemisphere and in the rACC remained after the 
high-threshold masking, indicating that these regions were activated 
both during opioid stimulation and during the pain and placebo 
conditions. Thus, these regions were activated both by opioids in 
general and by placebo during pain. The activations are presented on 
an SPM99-template. The activation threshold is at P = 0.005. 
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as a result of suggestions that each of the drugs 
used in the experiment was a potent analgesic 
(28) (i.e., expectation of pain relief) and by 
preceding the placebo treatment by active opi- 
oid during noxious stimulation in the first (five 
subjects) or second experimental block (four 
subjects) (i.e., opioid conditioning). Both of 
these placebo mechanisms can be abolished by 
the opioid antagonist naloxone and thus appear 
to be opioid dependent (32). Therefore, we 
expected similarities between activity observed 
in the opioid network and in the placebo anal- 
gesia network. The placebo analgesia was ac- 
companied by increased activity in the orbito- 
frontal and ACC areas during PPL when com- 
pared with P [Web table 3 (27); Figs. 1C and 
2B]. When we controlled for unspecific placebo 
effects (WPL-W), we observed an activation in 
the ACC [Web table 3 (27)], somewhat caudal 
to the rACC effect in PPL-P but rostral to the 
ACC activation during pain. 

Previous imaging studies have shown that 
the rACC is more reliably activated by opi- 
oids, whereas the caudal ACC is more reli- 
ably activated by pain (11, 12). This distinc- 

tion was also observed here, pointing to the 
importance of the rACC in opioid analgesia. 
This area of the human ACC contains a high 
concentration of opioid receptors (9). More- 
over, studies examining stimulus-induced an- 
algesia (16, 18, 19, 21, 23), nitrous oxide- 
induced analgesia (22), and hypnosis-induced 
change in pain perception (24, 25) have 
shown an increased activation in the rACC 
associated with the modulation mechanism. 
Rainville et al. (25) noted a similar functional 
division of the ACC: Pain (and unpleasant- 
ness) activated a more caudal region in the 
ACC, whereas the conditions involving sug- 
gestion, resulting in modulation of the pain 
experience, activated a more rostral part in 
the ACC. Hence, the increased activity in the 
rACC during PPL-P may support its involve- 
ment in the analgesic response mechanism 
during placebo. In addition, a post hoc anal- 
ysis indicated that during opioid analgesia, 
the high placebo responders activated this 
area, whereas the low responders did not 
(Fig. 3). This suggests a relation between 
how effectively opioids may activate the 

Fig. 3. Post hoc analy- . 
sis comparing the ac- 
tivation of the rACC in 
high placebo respond- 
ers with that in low 
responders revealed 
no significant differ- 
ences in PPL-P be- 
tween groups. Howev- 
er, activation of the 
rACC and adjacent ar- 
eas by the high place- 
bo responders was significant during POP-P [(x, y, z) = (-2, 46, 22); Z = 4.77] (A), whereas 
activation by the low responders was not significant (B). The difference between groups was 
significant in the rACC/ventromedial prefrontal cortex [(x, y, z) = (-2, 46, 26); Z = 3.24]. The 
activation threshold is at P = 0.005. 

Fig. 4. (A to C) Co- Covariation between rACC and the brainstem 
variation of activity 
in brainstem regions A POP B PPL C P 
with activity in the 
rACC (denoted by the 
blue sphere) in differ- 
ent pain conditions. 
(A) Activity in the 
rACC covaried with 
activity in the PAG 
and in the lower 
pons/medulla during 
the POP condition. 
These covariations PAG 
were significantly 
greater during POP as 
compared with p Pons Pons 
[Web t'able 4 (27)]. 
(B) A similar covaria- 
tion between the 
rACC and the lower 
pons/medulla was 
observed during the PPL condition. This covariation was significantly greater during PPL as 
compared with P [Web table 4 (27)]. (C) No such regressions were observed during the P 
condition. The activations are presented on an SPM99-template and a more detailed image of 
the brainstem indicating the approximate position of the PAG and the pons. The threshold of 
activation is at P = 0.005. 

rACC and adjacent areas and how well sub- 
jects respond to placebo during pain. Earlier 
studies have shown a behavioral correlation 
between opioid analgesia and placebo anal- 
gesia (32). The suggestion that the opioid 
system may vary among subjects is supported 
by the finding that the opioid receptor bind- 
ing potential during rest and pain is highly 
specific to an individual (10), leading to the 
hypothesis that high placebo responders have 
a more efficient opioid system. 

The placebo analgesic effect is dependent 
on complex cognitive information process- 
ing, including analysis of threat in a given 
context, expectations of treatment outcome, 
and desire for relief (1, 3, 4). The brainstem 
opioid system may thus be under cognitive 
control from higher order cortical regions. 
The ACC might play a key role in the cortical 
control of the brainstem during opioid anal- 
gesia (15, 34) by way of fiber tracts project- 
ing directly to the periaqueductal gray (PAG) 
(35) or by way of the medial thalamic nucleus 
(36). A similar mechanism may be necessary 
in placebo analgesia, which implies that a 
functional connection should exist between 
these regions, both in opioid and placebo 
analgesia. Regression analysis supported this 
hypothesis (30) [Web table 4 (27) and Fig. 
4]. The activity in the rACC covaried with 
activity in areas close to the PAG and the 
pons in the POP condition. We also observed 
a significant covariation in activity between 
the rACC and the pons, and a subsignificant 
covariation in activity between the rACC and 
the PAG, during PPL. No effect was ob- 
served in the pain-only condition (P), and the 
differences between these regressions (POP 
versus P and PPL versus P) were significant. 
The area in the pons is in the same region as 
the area activated in the main effect of opi- 
oids (Fig. 1). The brainstem opioid system 
consists of the PAG, which alters the neuro- 
nal activity in the rostral ventromedial me- 
dulla (4, 5). Additional nuclei in the pons, 
such as the parabrachial nuclei, also contain 
opioid-dependent neurons (4, 5). The positive 
covariation between rACC and these regions 
during POP and PPL, but not during P, may 
thus indicate that the higher cortical systems 
may, in specific circumstances, exert direct 
control over the analgesic systems of the 
brainstem not only during opioid analgesia 
but also during placebo analgesia. 

The increased activity in the lateral orbito- 
frontal cortex during placebo analgesia is of 
interest because previous PET studies have 
implicated this region in cognitively driven 
pain modulation (25, 37). Stimulation of this 
region in rats (38) and primates (39) also 
induces analgesia. A right predominance of 
the orbitofrontal activation was observed dur- 
ing placebo analgesia, but interpretation of 
this finding is uncertain because it may re- 
flect a threshold effect. Placebo analgesia 
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seems to activate a more rostral part of the 
orbitofrontal cortex as compared with the 
general opioid effect. Because the orbitofron- 
tal cortex has dense connections with both the 
ACC and the brainstem (40), which have also 
been implicated in placebo analgesia, we sug- 
gest that these regions belong to a network 
that uses cognitive cues to activate the endog- 
enous opioid system. 
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