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Signal-mediated nuclear import and export proceed through the nuclear pore 
complex (NPC). Some NPC components, such as the nucleoporins (Nups) Nup98 
and Nup96, are also associated with the nuclear interior. Nup98 is a target of 
the vesicular stomatitis virus (VSV) matrix (M) protein-mediated inhibition of 
messenger RNA (mRNA) nuclear export. Here, Nup98 and Nup96 were found 
to be up-regulated by interferon (IFN). M protein-mediated inhibition of mRNA 
nuclear export was reversed when cells were treated with IFN--y or transfected 
with a complementary DNA (cDNA) encoding Nup98 and Nup96. Thus, in- 
creased Nup98 and Nup96 expression constitutes an IFN-mediated mechanism 
that reverses M protein-mediated inhibition of gene expression. 

The Nup98 and Nup96 proteins are encoded 
by a single gene. The primary transcript is 
alternatively spliced, and the translation 
products are autocatalytically proteolyzed at 
one specific site (1-3). Nup98 interacts with 
an intranuclear protein (4) and transport fac- 
tors (5, 6). It is involved in nuclear import 
and export of proteins and RNAs (7-11) and 
is the target of the VSV M protein-mediated 

inhibition of mRNA export (12). A cDNA 
clone coding for part of the COOH-terminal 
sequence of Nup96 has been detected among 
mRNAs that were specifically induced by 
IFN--y (13). 

We found two classical elements, GAS 
and ISRE, that mediate increased gene ex- 
pression by IFN (14, 15). When U937 cells 
were incubated with IFN--y for up to 12 
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Fig. 1. Effects of IFN-y, IFN-ot, or A Co 45' 1.5h 12h IFNy B 
TNF-cx on the expression of some - + + - + - + - CHX CO 45' 1.5h 12h IFNy 

nucleoporins. (A) LeveLs of various 
mRNAs (3) at various times after 
IFN-y-treatment in the presence NupB Nup96 
or absence of cycloheximide 
(CHX). ControLs (CO) were incu- 

p8 
a-Nup9 

bated for 12 hours without IFN-y. 
(B) Immunoblot analysis at various -8tubulin 
times after IFN-y treatment of 
U937 cells (3). Equal amounts of C cO 45' 1.5h 12h IFNa _1 P 

protein of total cell lysates were a-Nup9 
assayed with either mAb414 or 33 

with specific antibodies against a-Nup 
Nup96 or Nup98 (3). (C) Immuno- * -p62 
blot analysis of Nup96 after IFN-cx CO 45' 1.5h 12h TNFa mAb414 

or TNF-a treatment. - U 
* Nup96 mAbNup96 4l p214 

a-NIlp96 mb1 

hours, we observed an increase in Nup98- 
Nup96 mRNA levels (Fig. IA). This induc- 
tion was not dependent on ongoing protein 
synthesis, as it was not inhibited by cyclo- 
heximide (Fig. IA). These findings suggest 
transcription regulation, although other 
regulatory mechanisms cannot be excluded. 

The increased abundance of Nup98- 
Nup96 mRNA in response to IFN--y was 
matched by increased amounts of Nup96 and 
Nup98 proteins. In contrast, there was no 
significant increase in the amounts of other 
nucleoporins, such as p62 and Nup214 that 
react with the monoclonal antibody mAb414 
(Fig. iB; also compare Fig. 3, left panels) 
(16). As expected, there were increased 
amounts of the IFN-inducible protein IRF9 
(3, 17). Of two other cytokines tested, only 
IFN-aL stimulated Nup96 expression, but to a 
lesser degree than IFN--y, whereas tumor ne- 
crosis factor-ct (TNF-oa) had no effect (Fig. 
IC). 

IFN--y signals through STAT1 ho- 
modimers and also regulates the expression 
of a class of genes in a STATI-independent 
manner (14, 18, 19). To determine whether 
the IFN--y-stimulated expression of Nup98 
and Nup96 was mediated by STAT1, we 
tested STAT1 or STAT +1+ mouse em- 
bryo fibroblasts (20) either untreated or 
treated with IFN--y. An increased expres- 
sion of Nup98 and Nup96 in response to 
IFN--y was observed only in the STAT I" 
cells but not in STAT1' cells (Fig. 2), 
demonstrating the essential role of STATI 
in regulating Nup96 and Nup98 expression. 

Immunofluorescence microscopy was 
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used to test whether the IFN-y-induced 
Nup98 and Nup96 were properly localized. 
The IFN--y-stimulated expression of Nup98 
(Fig. 3) and of Nup96 yielded an enhanced 
staining of these proteins at their physiolog- 
ical sites, the NPCs, and the nuclear interior. 
Thus, both intranuclear and NPC-associated 
Nup98 and Nup96 may be involved in IFN- 
y-mediated responses. 

VSV replicates in the cytoplasm (21), 
and VSV M protein inhibits nuclear export 
of host cell mRNA, ribosomal RNA, and 
small nuclear RNAs (22) as a mechanism to 
shut off host cell gene expression. It has 
been proposed that an interaction of the M 
protein with Nup98 is the cause of the 
nuclear export inhibition (12). We tested 
whether increased expression of Nup98 and 
Nup96 by IFN--y would reverse this inhibi- 
tion and restore nuclear export of host cell 
mRNA. Mouse embryo fibroblasts trans- 
fected with a cDNA coding for a green 
fluorescent protein (GFP)-tagged M pro- 
tein were incubated in the absence or pres- 

a-Nup98 

STAT1 4- 

Fig. 2.U-euainfN Nup98 

a-Nup98 

STAT1s by NT 
-NUp96 

<a-Nup96 

STAT14-/-_- U 9 

a-Nup96 

Fig. 2. Up-regulation of Nup98 and Nup96 
amounts by IFN-,y was STAT1-dependent. 
Shown are immunoblot analysis in STAT1+1+ 
or STAT1-/- mouse embryo fibroblasts that 
were incubated for the indicated time periods 
with IFN-y. 

ence of IFN--y. The cellular localization of 
polyadenylate [poly(A)] containing mRNA 
was then assessed by in situ hybridization 
with oligo(dT) (Fig. 4A). In the absence of 
IFN--y, most of the mRNA was localized in 
the nucleus of the M protein-transfected 
cells (upper panel). In contrast, IFN--y treat- 
ment of M protein-transfected cells yielded 
an even distribution of mRNA between the 
nucleus and the cytoplasm (Fig. 4B). Thus, 
IFN--y treatment indeed reverses the M pro- 
tein-mediated inhibition of host cell 
mRNA export. 

IFN--y induces the expression of a wide 
variety of genes, many of which are involved 
in antiviral response (23). To determine 
whether induction of Nup98 and Nup96 was 
sufficient to reverse the M protein export 
block, we tested whether transfection with 

I ~~~~-mAb4I4 
a ~~~~~Nup98 

Dlstance [pm] 
_ ~~~~~~~~~~~~~~~~~~~12hrlIFNy 

sCee ar: 0m o 2 
de[dnJ 

t 12 

Fig. 3. Double immunofluorescence localization of various nucleoporins in U937 cells that were not 
treated (upper panels) or treated with IFN-,y for 12 hours (lower panels). CelLs were fixed, 
permeabilized, and incubated with antibody to Nup98 (red; note staining at nuclear rim and nuclear 
interior) and mAb414 (green; note primarily nuclear rim staining). The ratio of Nup98 to mAb414 
intensities in the equatorial plane of the nucleus was quantified using the Leica TCS spectral 
confocal microscope software as shown in the graphs at right. Fluorescence intensities were 
normalized according to the mAb414 intensity that did not significantly change in the absence or 
presence of IFN-y. Bar, 5pxm. 
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Nup98 and Nup96 cDNA would substitute 
for IFN--y and relieve the inhibition of mRNA 
export. Using a luciferase reporter gene assay 
(24), cells were co-transfected with a mixture 
of plasmids coding for the M protein alone, 
for Nup98 and Nup96 alone, or for both. M 
protein expression clearly inhibited luciferase 
expression, and this inhibition was partially 
relieved by Nup98 and Nup96 expression 
(Fig. 4C). Thus, Nup98 and Nup96 expres- 
sion is capable of reversing M protein-medi- 
ated inhibition of nuclear mRNA export. 

The mechanism by which increased ex- 
pression of Nup98 and of Nup96 reverses 
M protein-mediated inhibition of mRNA 
export remains to be elucidated. The inhib- 
itory region of the M protein has been 
mapped (12, 25) and shown to target the 
NH2-terminal domain of Nup98 (residues 
66-515) (12). Nup98 (residues 66-515) 
contains several distinct domains including 

FG (Phe-Gly) repeats that function as dock- 
ing sites for karyopherins (also termed im- 
portins, exportins, or transportins) and a 
binding site for RanGEF that catalyzes the 
exchange of guanosine diphosphate for 
guanosine triphosphate (6, 26). It is con- 
ceivable that the M protein interferes with 
the function of any of these Nup98 do- 
mains, resulting in the observed RNA ex- 
port defects. Overexpression of Nup98 
could then compensate for the loss of these 
functions, thereby reversing the inhibition 
of RNA export. 

Another example for virus interference 
with nuclear transport at the level of 
nucleoporins is the polio virus-induced 
degradation of two specific Nups (Nup153 
and p62), which leads to protein import 
defects (27). Besides playing a key role in 
antiviral responses, the up-regulation of 
Nup98 and Nup96 may be involved in other 

processes mediated by IFN, such as innate 
immunity and cell proliferation. Nup98 is a 
frequent target of chromosomal rearrange- 
ments in acute leukemia. Its NH2-terminal 
FG repeat region is present in all leukemia- 
associated Nup98 fusions that cause chron- 
ic and acute myeloid leukemias (28, 29). 
Nup98 and Nup96 may, thus, play a role in 
a broad range of activities that can be po- 
tentially regulated by different signaling 
pathways. 
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Fig. 4. IFN-,y orMprti 
Nup98-Nup96 cDNA A M protein 
can reverse the M pro- 
tein-mediated inhibi- 
tion of mRNA export. 
(A) STAT1+'+ mouse 
embryo fibroblasts 
were transfected with 
a plasmid encoding 
the GFP-M protein 
and were incubated in 
the absence (upper M protein + IFNy [1 2hJ 
panels) or presence 
(lower panels) of IFN- 
y. Oligo(dT) in situ 
hybridization and flu- 
orescence confocal 
microscopy was per- 
formed as described 
(3). In the M protein- 
transfected cell that scale bar: 7.5,um 
was not treated with B STAT1+/+ STAT1-/- 
IFN-,y, the oligo(dT)- 100 100 
reactive mRNA re- 580 
mained largely in the - 
nucleus, whereas i 
IFN-y treatment of an CC Z * * 

M protein-transfected E 
0 E 

I M ~~~~~~~~20 cell yielded a nucleo- 
cytoplasmic distribu- ' o 0 
tion of mRNA resem- + + + + Mprotein 
bling that of an adja- C+ + IF 12h 
cent cell which was _ 120 
not transfected by the 
M protein. (B) 100 

STAT1+'+ or STAT1-V- E80 
cells were transfected 
with M protein and in- 60 - 
cubated in the ab- & 
sence or presence of 
IFN-,y, and the per- a2 * 
centage of cells that 
retained their mRNA Mo 
in the nucleus was de- %NP 
termined. (C) In a lu- 0 1 

6 

ciferase reporter gene 
expression assay, 
293T cells were co- 
transfected with GFP-M protein, the Nup98-Nup96 cDNAs, or both, as indicated (3). 
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