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Phototransduction by Retinal 

Ganglion Cells That Set the 

Circadian Clock 
David M. Berson,* Felice A. Dunn,t Motoharu Takaot 

Light synchronizes mammalian circadian rhythms with environmental time by 
modulating retinal input to the circadian pacemaker-the suprachiasmatic 
nucleus (SCN) of the hypothalamus. Such photic entrainment requires neither 
rods nor cones, the only known retinal photoreceptors. Here, we show that 
retinal ganglion cells innervating the SCN are intrinsically photosensitive. Un- 
like other ganglion cells, they depolarized in response to light even when all 
synaptic input from rods and cones was blocked. The sensitivity, spectral tuning, 
and slow kinetics of this light response matched those of the photic entrainment 
mechanism, suggesting that these ganglion cells may be the primary photo- 
receptors for this system. 

The SCN is the circadian pacemaker of the 
mammalian brain, driving daily cycles in ac- 
tivity, hormonal levels, and other physiolog- 
ical variables. Light can phase-shift the en- 
dogenous oscillator in the SCN, synchroniz- 
ing it with the environmental day-night cycle. 
This process, the photic entrainment of circa- 
dian rhythms, originates in the eye and in- 
volves a direct axonal pathway from a small 
fraction of retinal ganglion cells to the SCN 
(1-3). A striking feature of this neural circuit 
is its apparent independence from conven- 
tional retinal phototransduction. In function- 
ally blind transgenic mice lacking virtually 
all known photoreceptors (rods and cones), 
photic entrainment persists with undimin- 
ished sensitivity (4). Candidate photorecep- 
tors for this system are nonrod, noncone ret- 
inal neurons, including some ganglion cells, 
that contain novel opsins or cryptochromes 
(5-8). 

To determine whether retinal ganglion 
cells innervating the SCN are capable of pho- 
totransduction, we labeled them in the rat 
retina by retrograde transport of fluorescent 
microspheres injected into the hypothalamus 
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(9). In isolated retinas, whole-cell recordings 
were made of the responses of labeled gan- 
glion cells to light (10) (Fig. 1, A to E). In 
most of these cells (n = 150), light evoked 
large depolarizations with superimposed fast 
action potentials (Fig. 1, E to G) (11). The 
light response persisted during bath applica- 
tion of 2 mM cobalt chloride (Fig. IF; n = 

42), which blocks calcium-mediated synaptic 
release from rods, cones, and other retinal 
neurons (12). In contrast, other ganglion cells 
prepared and recorded under identical condi- 
tions but not selectively labeled from the 
SCN (control cells) lacked detectable re- 
sponse to light even without synaptic block- 
ade (47/50 cells; Fig. 1, I and J) (13). This is 
presumably because rod and cone photopig- 
ments were extensively bleached (10). A few 
control cells (3/50) exhibited weak, evanes- 
cent responses to light, but these were abol- 
ished by bath-applied cobalt (n = 2). 

To ensure blockade of conventional syn- 
aptic influences from rods and cones, we 
supplemented cobalt with a mixture of drugs 
that independently disrupted both the gluta- 
matergic synapses crucial to vertical signal 
transfer through the retina and the ionotropic 
receptors responsible for most inhibitory in- 
fluences on ganglion cells (14). Robust light 
responses persisted in SCN-projecting gan- 
glion cells under these conditions (Fig. 1G; 
n = 7). Furthermore, the somata of these 

ganglion cells exhibited photosensitivity even 
when completely detached from the retina by 
microdissection (Fig. 1H; n = 3). These light 
responses were not an artifact of photic exci- 
tation of either of the intracellular fluoro- 
phores we used, as the action spectrum of the 
light response (Fig. 2C) differed from the 
absorption spectra of both the retrograde trac- 
er and Lucifer Yellow (LY) used for intracel- 
lular staining. Also, light-evoked increases in 
spike frequency were detectable in extracel- 
lular recordings, before patch rupture and LY 
dye filling (n = 5). Whole-cell recordings 
revealed normal light responses when LY 
was omitted from the internal solution (n = 

8). In contrast, control cells lacked cobalt- 
resistant light responses even when labeled 
with both fluorescent beads and LY (n = 12; 
Fig. 11). These data indicate that retinal gan- 
glion cells innervating the SCN are intrinsi- 
cally photosensitive. 

To determine if these cells could serve as 
the primary photoreceptors for circadian en- 
trainment, we assessed congruence between 
their photic properties and those of the entrain- 
ment mechanism. The responses of a single cell 
to narrow-band stimuli of various intensities 
showed that at each wavelength, peak depolar- 
ization increased with stimulus energy (Fig. 2, 
A and B). Intensity-response curves exhibited a 
consistent slope when plotted in semilogarith- 
mic coordinates (Fig. 2B), as expected for re- 
sponses mediated by a single photopigment 
(principle of univariance). The horizontal dis- 
placements of the curves from one another re- 
flect the spectral dependence of the pigment's 
quantum efficiency and yield the spectral sen- 
sitivity function shown in Fig. 2C (red curve). 
Other cells exhibited similar action spectra (Fig. 
2C, green curve) (15). These action spectra 
closely matched that predicted for a retinal,- 
based pigment with peak sensitivity at 484 nm 
(Fig. 2C, black). They also resemble action 
spectra derived behaviorally for circadian en- 
trainment in rodents (16, 17), as expected if 
these ganglion cells function as primary 
circadian photoreceptors (18). Judging 
from available spectral evidence, the pho- 
topigment in these ganglion cells is more 
likely to be a retinaldehyde-based opsin 
such as melanopsin (5, 19, 20) than a fla- 
vin-based cryptochrome (21). 

1070 8 FEBRUARY 2002 VOL 295 SCIENCE www.sciencemag.org 



REPORTS 

The threshold and dynamic range of the 
light response in these ganglion cells were 
also similar to those of the entrainment mech- 
anism. Threshold retinal irradiance for a full- 
field stimulus was about 5 x 1011 photons 
s51 cm-2 at 500 nm (-Xmax; n = 3). This 

corresponds to an in vivo comeal irradiance 
of -2 x 1013 photons s-1 cm-2, comparable 
to thresholds for circadian phase shifts in 
rodents (-101? to 1013 photons s-1 cm-2 at 
500 nm) (22-24) and to ocular illumination 
by the dawn sky. Response saturation in pho- 
tosensitive ganglion cells occurred at irradi- 
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Fig. 1. Labeling and light responses of rat ganglion cells innervating the SCN. (A) Fluorescence 
photomicrograph showing deposit (white arrow) of mixed red and green fluorescent microspheres 
(appears as yellow) in the SCN. The red arrows mark boundaries of contralateral SCN. Acridine 
orange was used for green fluorescent Nissl counterstain. ox, optic chiasm; III, third ventricle. Scale 
bar, 500 Lm. (B) Two ganglion cells back-filled from the SCN, photographed in whole mount with 
rhodamine filter set to show retrograde labeling. The cell at right was patched and recorded. Scale 
bar, 20 Lm. (C) Same cells viewed under blue excitation, to show LY filling of the recorded cell. (D) 
Camera lucida drawing of cell filled in (C), as viewed in the whole mount after antibody to LY 
immunostaining (35). Scale bar, 100 Lm. (E) Strong depolarization and fast action potentials 
evoked in this cell (D) by a light pulse indicated by step in horizontal line below. (F to H) Evidence 
for the intrinsic photosensitivity of ganglion cells selectively retrolabeled from the SCN. (F and G) 
The light response apparent in control Ames solution (black traces) persisted during bath applica- 
tion of 2 mM CoCL2 (red traces) either alone (F) or in combination with a drug mixture blocking 
ionotropic and metabotropic glutamate receptors as well as ionotropic GABA and glycine receptors 
(G) (14). The absence of evoked spikes during drug application probably reflects depolarization 
block (tonic sodium channel inactivation) because weaker stimuli evoked spikes (40). (H) Light 
response recorded from the isolated soma of a ganglion cell retrolabeled from the SCN. The cell 
body was bathed in an enzyme solution (papain, -20 units/ml) with a puffer pipette and then 
mechanically removed from the retina with an empty patch pipette under visual control, ampu- 
tating its dendrites and axon. (I and J) Control recordings from a conventional ganglion cell (Fig. 4C) 
labeled nonselectively by a deposit of rhodamine beads in the optic chiasm and filled with LY. Light 
evoked no detectable response (I), although synaptic transmission was not blocked and responses 
to current injection were normal (J) (+50 pA). Retinal irradiance of stimuli (in photons s-1 cm-2): 
(E) 7 X 1012, (F) 2.6 X 1013, (G) 7.2 x 1012, (H) -1 X 1013, and (I) >>9 x 1013. Stimuli in (E), 
(F), and (G) were 500 nm. 

ances -3 logarithmic units above threshold 
(Figs. 2B and 3C), matching the dynamic 
range of entrainment behavior (16, 23, 24) 
and many SCN neurons [(25), but see (26)]. 

The circadian entrainment mechanism in- 
tegrates light energy over very long time 
scales, exhibits little adaptation, and responds 
poorly to brief stimuli (24, 27). Similar fea- 
tures were evident in the behavior of photo- 
sensitive ganglion cells. Constant illumina- 
tion depolarized cells tonically and elevated 
spike frequency, and the amount of depolar- 
ization was monotonically related to stimulus 

energy (Fig. 3). Response kinetics were much 
slower than typical for ganglion cells. Laten- 
cies to response onset (Vm > 3 standard de- 
viations above baseline) were typically sev- 
eral seconds and ranged from several hundred 
milliseconds for saturating stimuli (Figs. IF 
and 2A) to -1 min near threshold (Fig. 3B, 
bottom trace). Latencies from stimulus onset 
to peak depolarization were typically 10 to 
20 s (range: -2 s to 2 min) and inversely 
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Fig. 2. Spectral tuning of light response in 
photosensitive ganglion cells. (A) Voltage re- 
sponses of a single cell to a 500-nm narrow- 
band stimulus at indicated intensities (in log1o 
photons s-1 cm-2). Baseline - -60 mV for 
each trace. (B) Plots of peak depolarization as a 
function of log retinal irradiance for each of 
several narrow-band spectral lights (400- to 
600-nm wavelength, as indicated; 10-nm width 
at half height); same cell as in (A). Peak was 
obtained from a 1-s boxcar average of raw 
voltages. (C) Spectral sensitivity functions de- 
rived for photosensitive ganglion cells from rel- 
ative displacements of intensity-response func- 
tions along the abscissa in (B). Red curve: same 
cell as in (A) and (B). Green curve: group data 
for all cells (n = 34; number of cells tested per 
wavelength as follows: 400 nm, 5; 420 nm, 3; 
440 nm, 2; 460 nm, 4; 480 nm, 4; 500 nm, 34; 
520 nm, 7; 540 nm, 5; 570 nm, 2; and 600 nm, 
2). Black curve: nomogram for retinal -based 
photopigment with kmax of 484 nm (411, fit by 
least squares method to the group data. 

www.sciencemag.org SCIENCE VOL 295 8 FEBRUARY 2002 1071 



REPORTS 

A 
~~~1A omv 

10 min 

-48- 

14.8 IW 

13.8 |i 
. ..... omv. 

12.9| 11 

12.0 v 

- l -- 1- 2 min 

C 
> 30 

C 

W 20 
.CN d 20 2 

.m 

CO) 0 

11 12 13 14 15 

Log Irradiance (photons/sec/cm2) 

Fig. 3. Tonic encoding of light intensity by 
photosensitive ganglion cells. (A) Maintained 
depolarization evoked by 20 min of constant, 
diffuse illumination (retinal irradiance = 3 X 
1013 photons s-~ cm-2; 500 nm); spikes ob- 
scured by low sampling rate. (B) Voltage re- 
sponses evoked in another cell by 4-min stimuli 
varying in intensity (log1o irradiance in photons 
s-1 cm-2 indicated at left; 500 nm). Note tonic 
depolarization, maintained spiking, and, for 
near-threshold stimulus (bottom trace), ex- 
tremely long response latency. (C) Magnitude 
of maintained depolarization as a function of 
stimulus energy for the cell in (B) (open circles) 
and for two other cells. Bathing medium: Ames. 

related to stimulus energy. Repolarization af- 
ter intense stimuli required several minutes 
and was sometimes punctuated by spontane- 
ous depolarizations and spike bursts lasting 
up to a minute each (Fig. 3B). 

Photosensitive ganglion cells shared a com- 
mon morphology (Fig. 4, A and B), as revealed 
by intracellular staining with LY (28). Somata 
were intermediate in diameter among neurons 
of the ganglion cell layer (14.7 ? 1.2 lIm, 
mean ? SD; n = 18). Many cells sent an axon 
into the optic fiber layer; those lacking one had 
presumably lost it during mechanical exposure 
of the soma before recording. The sparsely 
branching, tortuous dendrites of these cells ar- 
borized primarily in the outer part (OFF sub- 
layer) of the inner plexiform layer (IPL; Fig. 
4B). Although some dendrites coursed within 
the inner IPL (ON sublayer) for 100 to 200 iim, 
nearly all terminated in the OFF sublayer. Such 
stratification is highly unusual for ganglion 

Fig. 4. Morphology of A 
photosensitive gangli- 
on cells as revealed by 
intracellular staining. 
(A) Camera lucida 
drawings of cells 
stained with LY and 
viewed in retinal flat 
mounts. Arrowheads 
indicate axons. (B) 
Schematic summary 
of dendritic stratifica- E A T 
tion of these cells, 
predominantly in the 
OFF sublayer of the \ 
inner plexiform layer. 100,m 
(C) Morphology of a 
control ganglion cell 
that lacked any light C 
response under these B 
conditions (Fig. 11). 

B 
off 

Scale bar applies to all 
panels. 

o 

no response 

cells depolarized by light [but see (29, 30)]. 
Dendritic fields were large (diameter 497 ? 
115 urm; mean + SD; n = 21). Stimuli illumi- 
nating the dendrites but not the soma consis- 
tently evoked light responses (31). Control 
cells, which lacked cobalt-resistant light re- 
sponses, had markedly different dendritic mor- 
phology (e.g., Fig. 4C). 

These data identify a distinct ganglion cell 
type in the mammalian retina with character- 
istic dendritic profile and stratification pat- 
tern, extraordinarily sluggish and tonic light 
responses encoding ambient light level, and 
axonal projections to the SCN. The most 
striking feature of this cell type, however, is 
its apparent capacity for intrinsic phototrans- 
duction. The correspondences between the 
photic properties of these cells and those of 
the entrainment mechanism suggest that these 
unconventional ganglion cells may represent 
the primary photoreceptors for synchronizing 
the circadian clock to environmental time. 

Melanopsin (5, 7) is probably the photopig- 
ment responsible for the intrinsic sensitivity of 
these cells to light, as it is selectively expressed 
in the small subset of ganglion cells that are 
intrinsically photosensitive and innervate the 
SCN (32, 33). In amphibians, certain nonretinal 
cells contain melanopsin, and these cells, too, 
are photosensitive, with action spectra resem- 
bling those of photosensitive rat ganglion cells 
(Fig. 2C) (5, 19, 20). Melanopsin exhibits 
marked sequence similarity to invertebrate 
opsins (5, 7), which, unlike vertebrate opsins, 
retain their photoisomerized retinaldehyde 
chromophore and typically trigger depolarizing 
light responses when activated. These proper- 
ties may help to explain why photosensitive 
ganglion cells differ from conventional retinal 
photoreceptors in their response polarity and 
lack of dependence on the pigment epithelium. 
Cryptochromes, blue-light-absorbing, flavin- 

based pigments, have been proposed as circa- 
dian photopigments (8), but spectral evidence 
(Fig. 2C) (21) weighs against their mediating 
the light response in intrinsically photosensitive 
ganglion cells. 

Note added in proof. Further evidence for 
the presence of melanopsin in ganglion cells 
innervating the SCN has emerged (34). 
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Mycobacterium tuberculosis (Mtb) mounts a stubborn defense against oxidative 
and nitrosative components of the immune response. Dihydrolipoamide de- 
hydrogenase (Lpd) and dihydrolipoamide succinyltransferase (SucB) are com- 
ponents of a-ketoacid dehydrogenase complexes that are central to interme- 
diary metabolism. We find that Lpd and SucB support Mtb's antioxidant defense. 
The peroxiredoxin alkyl hydroperoxide reductase (AhpC) is linked to Lpd and 
SucB by an adaptor protein, AhpD. The 2.0 angstrom AhpD crystal structure 
reveals a thioredoxin-like active site that is responsive to lipoamide. We pro- 
pose that Lpd, SucB (the only lipoyl protein detected in Mtb), AhpD, and AhpC 
together constitute a nicotinamide adenine dinucleotide (reduced)-dependent 
peroxidase and peroxynitrite reductase. AhpD thus represents a class of thi- 
oredoxin-like molecules that enables an antioxidant defense. 

Mtb, the leading cause of death from a single 
bacterial species, is restrained from prolifer- 
ation in most infected individuals by oxida- 
tive and nitrosative stress imposed in part by 
inducible nitric oxide synthase (1, 2). Yet 
despite the immune response, viable myco- 
bacteria persist. Bacterial persistence has di- 
rected our attention to Mtb's defenses against 
oxidative and nitrosative stress. 

Mtb peroxiredoxin alkyl hydroperoxide re- 
ductase (AhpC), a member of the peroxiredoxin 
family of nonheme peroxidases, protects heter- 
ologous bacterial and human cells against oxi- 
dative and nitrosative injury (3, 4). The redun- 
dancy of peroxiredoxins in Mtb complicates 
interpretation of the phenotype of an ahpC- 
deficient mutant (5). AhpC metabolizes perox- 
ides (6) and peroxynitrite (7) via a conserved 
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