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The Mantle Flow Field Beneath 

Western North America 
P. G. Silver'* and W. E. Holt2 

Although motions at the surface of tectonic plates are well determined, the 
accompanying horizontal mantle flow is not. We have combined observa- 
tions of surface deformation and upper mantle seismic anisotropy to es- 
timate this flow field for western North America. We find that the mantle 
velocity is 5.5 + 1.5 centimeters per year due east in a hot spot reference 
frame, nearly opposite to the direction of North American plate motion 
(west-southwest). The flow is only weakly coupled to the motion of the 
surface plate, producing a small drag force. This flow field is probably due 
to heterogeneity in mantle density associated with the former Farallon 
oceanic plate beneath North America. 

It is surprising that after more than three de- 
cades into the plate tectonic revolution, we have 
so little direct observation of the mantle flow 
field that accompanies plate motion. The most 
straightforward measure of mantle flow is pro- 
vided by the trajectory of subducted slabs 
whose seismicity and high seismic velocities 
provide tracers of the flow. Yet even in subduc- 
tion zone environments there is evidence for 
complex three-dimensional flow both above 
and below the slab (1-4). Far from slabs, even 
less information is available to delineate the 
mantle flow field. Various approaches have 
been used to predict this flow field theoretical- 
ly. One approach (5, 6) calculates the mantle 
flow field that would result if the motions of the 
plates are imposed as boundary conditions, in 
addition to considering the trenches and ridges 
as sources and sinks of mass. This flow field is 
dominated by plate-entrained flow and a corre- 
sponding counterflow. More recently, several 
groups have calculated the instantaneous field 
arising from density anomalies in the mantle 

'Department of Terrestrial Magnetism, Carnegie In- 
stitution of Washington, Washington, DC 20015, 
USA. 2State University of New York, Stony Brook, NY 
11794, USA. 

*To whom correspondence should be addressed. E- 
mail: silver@dtm.ciw.edu 

inferred from either seismic tomography or the 
history of subduction (7, 8). The plates are 
again taken as boundary conditions on this flow 
field, and a plate velocity is chosen such that the 
integrated torque on each plate vanishes. Both 
approaches adequately predict plate velocities, 
although the accompanying mantle flow fields 
and driving forces are different. The major dif- 
ference in these approaches has to do with the 
role of density anomalies that are not directly 
attached to currently subducting plates, but are 
either inferred from global seismic tomography 
or from the long-term history of subduction. 
One way of testing these models is to measure 
the flow field beneath a plate that is not attached 
to a slab, but that has a mantle density anomaly 
beneath it and therefore different mantle flow 
fields predicted by (5, 6) and (7, 8). The North 
American plate has these characteristics (9). 

Here we provide such a test, using a new 
procedure for inferring mantle flow velocity 
beneath western North America through the 
simultaneous analysis of surface deformation 
data [from Global Positioning System (GPS) 
and Quaternary fault slip data] and mantle de- 
formation inferred from seismic anisotropy. 
Westernmost North America is ideal in partic- 
ular because there is little lithosphere beneath 
the crust (10-12). This means that the anisot- 
ropy is dominated by the differential horizontal 
motion between the lithosphere and underlying 

mantle, producing a deformation fabric in the 
asthenosphere (13), associated with simple 
shear (14). The magnitude and direction of 
horizontal shear within the asthenosphere de- 
pends on the vector difference, V,, between the 
horizontal velocity of the lithosphere, Ve, and 
the horizontal component of velocity of the 
mantle, Vm, at the base of the asthenosphere 
(15). Writing Vm(r) = rawm X r, Vp(r) = rewp 
X F, and Ve(f) = Vp(f) + Vt(f), this vector 
difference can be expressed as 

V(r) = rewp X r + Vt(r) 
- ram X 

(1) 
where re is Earth's radius, wp is the angular 
velocity for the stable portion of the plate, 
Vt(r) is the lithosphere velocity relative to the 
stable portion of the plate [i.e., Vt(f) = 0 for 
a rigid plate], om is the angular velocity of 
the mantle at the base of the asthenosphere at 
radius ra, and r is Earth's position unit vector 

(16). 
The orientation of V,(r) can be constrained 

from seismic anisotropy; for finite strains 
of order unity, the a axis of olivine tends to 
orient parallel to the flow line (17) and 
hence parallel to V,(r). For a vertically 
propagating shear wave recorded at a single 
station, the fast polarization direction, (, of 
a split shear wave will be parallel to V,(r) 
as well (14). If we have an observation of 
', we can then express the orientation of 

V,,(r) as V,(r) = ?V,(r), where +Vs(P) 
denotes the orientation of 4 subject to a 
180? ambiguity. Within or across a plate 
boundary zone, where Vt(r) changes as a 
function of F, the three components of om 
in Eq. 1 can be uniquely determined with as 
few as three observations of 4 (Fig. 1) (18). 

We used splitting data from only the red 
areas of Fig. 2, where asthenospheric flow is 
likely to dominate the anisotropic contribu- 
tion (19). For Vs(r) in this western region, we 
used data from a recent study (20) augmented 
by additional data in the region (14, 21) (Fig. 
2). For Vt(r), we used the interpolated surface 
velocity field (22, 23) derived from GPS 
observations (24-33) and Quaternary fault 
slip rates (34, 35). 
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We first sought to determine whether 
the mantle leads or trails the hot spot mo- 
tion of the plate (i.e., moving west-south- 
west or east-northeast with respect to the 
plate). A "leading" model is clearly incon- 
sistent with the splitting data, yielding pre- 
dictions that are nearly orthogonal to the 
observed values in California (Figs. 1 and 
3A). Of the "trailing" models, we first con- 
sider the case in which the mantle is fixed 
in a hot spot frame, which predicts o, = 
0;28? per million years (My) (36) and om = 

0?/My in Eq. 1. This "trailing" model is 
more successful, being broadly consistent 
with the observations (Fig. 3B). From this 
we can conclude that, to first order, the 
mantle trails the plate. The predicted split- 
ting values, however, are systematically ro- 
tated counterclockwise with respect to the 
observations in the east, and clockwise for 
stations in the west (Fig. 3B). We next 
performed a formal inversion to estimate 
the three components of op in the reference 
frame o) = 0?/My, where the mantle is 
assumed to be stationary. We find that op = 
1.3 ? 0.3?/My and rotates about a pole 
located at a latitude of -65? + 4? and 
longitude of 49? + 1? (la error) (37). This 
model (Fig. 3C) is close to the hot spot pole 
(38), although the angular velocity is much 
higher than what would be predicted if the 
mantle were indeed stationary in a hot spot 
frame. In the hot spot frame, the mantle 
moves about a pole o)m = (+63?, -122?, 
1.1 /My), which yields easterly mantle ve- 
locities of about 5.5 ? 1.5 cm/year (la 
error) beneath western North America (Fig. 
4). Because the uncertainties in the hot spot 
frame (36) are included within the formal 
uncertainties in om, these velocities are 
significantly different from zero in a hot 
spot frame (39). The entire data set there- 
fore requires a nonzero component of east- 
ward flow in the mantle beneath western- 
most North America (40). 

One might argue that the anisotropy direc- 
tions in the southern part of the model are due 
to local effects, such as a mantle keel beneath 
the western Transverse Ranges (41). This is 
unlikely, however, because observations over 
a large area-on the Pacific Plate to the west, 
in Baja, California, to the south, and in the 
Basin and Range to the east-also require 
eastward flow. Fossil fabric within the litho- 
spheric mantle is also an unlikely explana- 
tion, because the tomography argues for rel- 
atively thin mantle lithosphere throughout 
this region (10). It is of course possible to 
find a more complex mantle flow field than 
the uniform field assumed here, which might 
provide a better match to the observations 
and possibly a lower magnitude of mantle 
flow velocity. If, however, the mantle flow 
field beneath westernmost North America is a 
long-wavelength feature, then nonzero east- 

ward mantle velocities provide the simplest 
and best fitting solution. 

This study represents a direct measure- 
ment of mantle flow velocity in a region 
other than a subducted slab, and it can be 
used to test model predictions of this flow 
field. Clearly these data are inconsistent 
with a mantle that leads the plate, is moving 

Fig. 1. Extracting the A Velocity field Mantle anisotropy 
velocity of an overlying 
plate with respect to 
the mantle for a de- 
forming plate. Map Rigid 
views in hot spot frame plate 
are shown for rigid 
plate (A) and deformed 
plate (B) velocity fields 
(left) and correspond- B 
ing anisotropy direc- 
tions for ?s (right) for 
locations 1 and 2 on 
the plate. Arrows give Deformed _ 
lithosphere velocity V, plate 
(green), mantle veloci- 
ty Vm (two cases: red 
for mantle leading 
plate case, violet for 
mantle trailing plate Ve-Vm 
case), and differential ve Vm=V 
velocity vector V = A A 
V, - Vm (blue vector). V = V 
For a rigid plate, ?Vs is 
the same for both lead- 
ing and trailing cases. For a deformed plate, however, values of ?+V are completely different. 
For example, in (B), if Vm leads the plate (red arrow), then V, is oriented in an almost northerly 
direction at location 1, and hence ?Vs is oriented north-northeast-south-southwest. If Vm 
trails the plate (violet arrow), then V,(P) and ?+s are oriented westerly and east-west, 
respectively. 

400 

350 

300 
235? 240? 245? 250? 255? 260? 

Fig. 2. Map of available splitting observations (14, 20, 21) superimposed on mantle shear 
velocity at a depth of 150 km (10). Circles give station locations. Bar orientations give splitting 
fast polarization direction (), which equals ?+ V,. We use data only from "red" (slow) areas 
(solid circles), where the influence of lithosphere on anisotropy is expected to be small. 

coherently with the stable part of North 
America (42), or is stationary in a hot spot 
frame. The inferred mantle velocity field is 
also inconsistent with flow models driven 
by the surface motions of the plates that 
include shallow return flow, because these 
models predict southward flow beneath 
western North America (5, 6). One flow 
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model that gives roughly the correct direc- 
tion is the instantaneous flow driven by 
density anomalies in the mantle that are 
inferred from the history of subduction dur- 

I - 

40" 

35, . 

3. r e i 

(, y aio mtt 

inversion for mantle velocity (C). In (B) and (C), 

D ir 

35" j 

e i e b e 40 2 w45 

respectig. 3. A) Shear-wave splitting data set 
[s(e), ony station n m eans shown; see text], 
with predicted values from two models: mantle 
stationary in a hot spot frame (B) and formal 
inversion for mante velocity (C). s n (B and (), 
misfit angle is color-coded as follows: Red, 
model is clockwise by more than 14? with 
respect to data; blue, model is counterclock- 
wise by more than 14? with respect to data; 
white, neither threshold is reached. Note that 
the hot spot model is broadly consistent with 
observations but exhibits a systematic misfit 
pattern that is substantially reduced by the 
results of the formal inversion (C). 

ing the last 200 My (7, 8). ]:n this model, the 
sinking Farallon slab beneath mid-North 
America entrains flow toward the center of 
the plate. In western North America this 
flow is approximately northeast (43, 44), 
which is compatible with our results. Our 
observations thus suggest that at the base 
of the asthenosphere there is east-directed 
flow beneath western North America that 
is produced by the sinking Farallon slab. 
Detailed information about the Farallon 
slab has been obtained by seismic tomog- 
raphy (9) where high-velocity anomalies in 
the mantle are associated with various frag- 
ments of the Farallon slab. Some of the 
fragments apparently have sinking veloci- 
ties greater than 2 cm/year averaged over 
the last 16 My. If this sinking velocity can 
be translated to a horizontal velocity, it 
would make that velocity approximately 
compatible with the lower bound on the 
95% confidence region of our velocity 
estimate. 

235? 240? 245? 

50 mm/yr 

40" \ ^ - ) ^-^^ ^ E ) 400 

~~~35" ~350 

235? 240? 245? 

Fig. 4. Estimated mantle velocity, Vm (), in a hot spot frame (black arrows) along with lithosphere 
motion, Ve(f) (red arrows), also in a hot spot frame. Differences between Ve(f) and Vm(f) yield the 
best-fit directions of ?Vs(f) shown in Fig. 3C. The 95% confidence ellipses in Vm(f) incorporate formal 
uncertainty from inversion of Vs(f) plus uncertainty in the hot spot frame (36). Mantle flow is 
approximately eastward at 5.5 ? 1.5 cm/year (l(r). 

Our results have implications for the 
nature of the flow field that accompanies 
plate tectonics. First, at least for this region 
of western North America, the mantle does 
not constitute a driving force for the plate, 
but rather a drag force. Yet this drag force 
must be very weak. Plate deformation in 
the western United States is modeled re- 
markably well by boundary stresses and 
stresses produced by gravitational potential 
energy differences (35, 45-47), with no 
discernible contribution from basal shear. 
The high strain rates within the astheno- 
sphere implied by this flow field conse- 
quently require very low viscosities in or- 
der to produce small basal tractions. Recent 
viscosity estimates for the crust and upper 
mantle in this tectonic environment con- 
firm this (48). Thus, there is a well-devel- 
oped asthenospheric decoupling zone be- 
neath western North America. A conse- 
quence of this decoupling is that, as we 
have found, a significant component of 
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mantle flow, produced by deeper mantle 
density heterogeneity, is unrelated to the 
velocity of the plate above and has essen- 
tially no influence on its motion or internal 
deformation. 

The last few decades have seen the de- 
velopment of two basically incompatible 
views of the plate-mantle system. The tec- 
tonophysical view assumes effective de- 
coupling between the plate and a stationary 
mantle by a mechanically weak astheno- 
sphere. The plates are essentially "self- 
driving" (49). In the mantle dynamics view, 
the plates are strongly coupled to a mantle 
flow field that is driven by sources of buoy- 
ancy in the mantle (7, 8). Our results sug- 
gest that both views are partly correct when 
applied to westernmost North America. We 
do observe plate-mantle decoupling be- 
neath a part of the plate, but we also find a 
mantle flow field that is likely driven by 
deep mantle density heterogeneity. If this 
description is correct, then beneath the oce- 
anic two-thirds of Earth, where a weak 
asthenosphere is most likely present, we 
may be completely surprised by the actual 
motions of the mantle. More important, 
however, the direct measurement of these 
motions, as done here, holds the possibility 
of vastly increasing our understanding of 
the dynamic mantle. 
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