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BFA treatment, making them even easier to 

identify (Fig. 3, asterisks). 
The partitioned matrix components were 

next tested for functionality. NRK cells that had 
entered metaphase in the presence of BFA were 
microinjected with a plasmid encoding the plas- 
ma membrane marker CD8 (28). After mitosis, 
BFA was washed out to permit repopulation of 
the Golgi matrix with enzyme-containing mem- 
branes. Two hours later, analysis showed that 
the re-formed Golgi mediated the transport of 
CD8 to the cell surface (Fig. 1C). As a control, 
co-injection of Sarldn (29) prevented exit from 
the ER, even though the matrix components 
re-formed a ribbon-like structure. 

As an alternative to BFA, we used Sarldn to 
fractionate the Golgi apparatus. Synchronized 
NRK cells were injected with Sarldn protein 5 
to 6 hours before entry into mitosis, to trap the 
Golgi enzymes in the ER, leaving the matrix 
proteins behind. Matrix fragments containing 
GM130 partitioned at all stages of mitosis in a 
manner almost indistinguishable from that of 
untreated cells. Partitioning occurred in the ab- 
sence of ManII, which was present throughout 
the ER (Fig. 4). 

These two experimental methods for sepa- 
rating Golgi enzymes and Golgi matrix proteins 
emphasize a partitioning mechanism that is in- 
dependent of the ER. This mechanism depends 
on Golgi matrix structures rather than the en- 
zyme-containing membranes that normally pop- 
ulate them, which in turn suggests that these 
membranes are a less important part of the Golgi 
partitioning process. They could either travel 
with the matrix structures to the daughter cells 
(as we would argue) or get there via the ER (as 
would be argued by others). Thus, the two mod- 
els are no longer mutually exclusive, and one 
could imagine that enzymes could take either or 
both routes. In this context, recent work on 
budding yeast suggests that the early Golgi is 
inherited via the ER, whereas the late Golgi is 
inherited autonomously (30). In the end, it may 
not matter how the enzymes are inherited, pro- 
vided that there is accurate inheritance of the 
Golgi matrix (31). 
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Role of Escherichia coli Curli 

Operons in Directing Amyloid 
Fiber Formation 
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Amyloid is associated with debilitating human ailments including Alzhei- 
mer's and prion diseases. Biochemical, biophysical, and imaging analyses 
revealed that fibers produced by Escherichia coli called curli were amyloid. 
The CsgA curlin subunit, purified in the absence of the CsgB nucleator, 
adopted a soluble, unstructured form that upon prolonged incubation as- 
sembled into fibers that were indistinguishable from curli. In vivo, curli 
biogenesis was dependent on the nucleation-precipitation machinery re- 
quiring the CsgE and CsgF chaperone-like and nucleator proteins, respec- 
tively. Unlike eukaryotic amyloid formation, curli biogenesis is a productive 
pathway requiring a specific assembly machinery. 

Bacteria express a variety of cell-surface pro- nized as biofilms, colonies, or multicellular 
teinacious filaments that can promote coloniza- fruiting bodies. Curli are a class of highly ag- 
tion of an epithelial surface, entry into host gregated, extracellular fibers expressed by 
cells, exchange of DNA between bacteria, and Escherichia and Salmonella spp. that are in- 
development of bacterial communities orga- volved in the colonization of inert surfaces and 

Role of Escherichia coli Curli 

Operons in Directing Amyloid 
Fiber Formation 

Matthew R. Chapman,1 Lloyd S. Robinson,1 Jerome S. Pinkner,1 
Robyn Roth,2 John Heuser,2 Marten Hammar,3 

Staffan Normark,3 Scott J. Hultgrenl* 

Amyloid is associated with debilitating human ailments including Alzhei- 
mer's and prion diseases. Biochemical, biophysical, and imaging analyses 
revealed that fibers produced by Escherichia coli called curli were amyloid. 
The CsgA curlin subunit, purified in the absence of the CsgB nucleator, 
adopted a soluble, unstructured form that upon prolonged incubation as- 
sembled into fibers that were indistinguishable from curli. In vivo, curli 
biogenesis was dependent on the nucleation-precipitation machinery re- 
quiring the CsgE and CsgF chaperone-like and nucleator proteins, respec- 
tively. Unlike eukaryotic amyloid formation, curli biogenesis is a productive 
pathway requiring a specific assembly machinery. 

Bacteria express a variety of cell-surface pro- nized as biofilms, colonies, or multicellular 
teinacious filaments that can promote coloniza- fruiting bodies. Curli are a class of highly ag- 
tion of an epithelial surface, entry into host gregated, extracellular fibers expressed by 
cells, exchange of DNA between bacteria, and Escherichia and Salmonella spp. that are in- 
development of bacterial communities orga- volved in the colonization of inert surfaces and 

www.sciencemag.org SCIENCE VOL 295 1 FEBRUARY 2002 www.sciencemag.org SCIENCE VOL 295 1 FEBRUARY 2002 851 851 



biofilm formation (1, 2) and mediate binding to 
a variety of host proteins (3-5). 

Polymerized curli appear as 4- to 7-nm- 
wide fibers of varying lengths by negative- 
stain electron microscopy (EM) (6). Under 
high-resolution EM, curli appeared as a tan- 
gled and amorphous matrix surrounding the 
bacteria (Fig. 1A) (7). At higher magnifica- 
tions, curli fibers appeared as -6- to 12-nm- 
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wide fibers of varying lengths (Fig. 1, B and C). 
Curli were purified from MC4100 by se- 

quential differential centrifugation (S6) and an- 
alyzed by SDS-polyacrylamide gel electro- 
phoresis (PAGE) (8). Resolution of CsgA, the 
major structural component of curli, required 
brief treatment with 90% formic acid (FA) to 
depolymerize the CsgA polymers into a - 17.5- 
kD protein and two minor proteins that migrated 
at -30 and 32 kD (Fig. ID). Only the 17.5- and 
32-kD bands were unique to FA-treated sam- 
ples, and these bands were recognized by anti- 
bodies to CsgA (anti-CsgA) (9). The migration 
of these proteins is consistent with monomer 
and dimer sizes of CsgA (10. 11). By EM, 
non-FA-treated S6 curli were indistinguishable 
from those presented naturally on the bacterial 
surface, appearing as aggregated fibers of vary- 

14kD -..}_ 

Fig. 1. High-resolution deep-etch EM micrographs of curliated E. coli and purification of curli fibers. (A 
and B) Representative freeze-fractured micrographs that have been rotary shadowed with platinum. The 
inset in (A) shows curli fibers. (C) MC4110 was absorbed onto glass and deep-etched without being 
fractured before rotary shadowing with platinum. (D) Coomassie stain SDS-PAGE of curli samples 
isolated from E. coli strain MC4100. Lanes 1 and 2 contain 40 (i.g of S6 wild-type curli without and with 
FA treatment, respectively. Lane 3 contains 20 ljg of FA-treated GP curli. Molecular size markers (in 
kilodaltons) are indicated on the left. (E) Negative-stain EM micrographs of MC4100 grown on YESCA 
plates at 26?C for 48 hours. (F) Negative-stain EM micrograph of purified wild-type S6 curli. Bars: (A), 
400 nm; (B) and (C), 60 nm; (E) and (F), 200 nm. 

ing lengths and widths (compare Fig. i. E and 
F). Circular dichroism (CD) analysis indicated 
that these fibers were rich in f3-sheet secondar' 
structure with a minimum peak at -218 nm 
(Fig. 2A). 

Like other amyloid fibers, S6 curli induced 
a spectral change of a 10 FLM Congo red (CR) 
solution with a maximum difference in absor- 
bance between CR alone and CR bound to curli 
fibers at -541 nm (Fig. 2. B and C) (12). The 
curli used in these assays contained a small 
amount of contaminating proteins (Fig. ID). 
Pure, intact curli (called GP curli for "gel- 
purified") were isolated as described (10) (Fig. 
1D). GP curli retained the ability to bind CR 
and cause the red shift, demonstrating that curli 
were sufficient to augment the absorbance of 
CR (Fig. 2B). Addition of purified S6 curli to a 
5 FpM solution ofthioflavin T (ThT) resulted in 
a fluorescence emission maximum at 482 nm 
(Fig. 2D), which is identical to the fluorescence 
induced by other amyloid proteins (13, I4). 

Amyloid formation in eukaryotic cells is 
thought to be the result of a misguided pro- 
tein-folding pathway. In contrast, E. coli pos- 
sesses a specific nucleation-precipitation ma- 
chinery encoded by the csgAB and csgDEF(C 
operons to assemble curli. CsgB is thought to 
nucleate CsgA fibers (15). The csgDEFG 
genes encode CsgD, a FixJ-like transcription- 
al regulator, and three putative curli assembly 
factors, CsgE, CsgF, and CsgG. The lipopro- 
tein CsgG localizes to the inner leaflet of the 
outer membrane and may serve as a curli 
assembly platform ( 16 ). 

A nonpolar csgF deletion mutant 
(MHR592) (17) resulted in aberrant CR bind- 
ing properties. Wild-type bacteria stained CR- 
positive after 30 hours of growth on YESCA 
plates (9). Strain MHR592 (csgF ) was CR- 
negative after 30 hours of growth and only 
slightly CR-positive after 48 hours of growth 
(9). EM analysis of csgF bacteria showed that 
fibers were less abundant but were otherwise 
indistinguishable from those produced by wild- 
type bacteria (Fig. 3A). 

The monomeric and polymeric state of 
CsgA in the absence of CsgF was assessed. 
Very little SDS-soluble CsgA was present 
in extracts made from wild-type bacteria 
(Fig. 3B) because most of the CsgA sub- 
units were assembled into curli as deter- 
mined by the presence of a 17.5-kD band 
after pretreatment with FA (Fig. 3B). Sim- 
ilar to a c.sgB mutant (Fig. 3B), most 
CsgA produced by a csrgF mutant re- 
mained in an SDS-soluble form after 48 
hours of growth (Fig. 3B). 

CsgA is secreted in a soluble, assembly- 
competent form by a csgB- mutant (CsgA" 
donor) and can be assembled on the surface of 
csgA- mutant (CsgB recipient) bacteria in a 
process called interbacterial complementation 
(Fig. 3D) (I8). CsgB+ recipient cells lacking 
the CsgA protein stained CR-positive whlen 
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cross-streaked with either csgF or csgF-B- 
double-mutant bacteria (Fig. 3D), indicating 
that CsgA was secreted from csgF- cells and 
assembled on the CsgB+ recipient cells. In 
contrast, csgF and csgF-B- mutants were un- 
able to accept CsgA from a CsgA+-donating 
strain (Fig. 3D). Thus, the curli assembly defect 
in csgF mutants was a nucleation defect be- 
cause CsgA produced by these cells was assem- 
bly competent. CsgF may work independently 
or in concert with CsgB to guide in vivo extra- 
cellular nucleation of CsgA. 

A nonpolar csgE- deletion mutant 
(MHR480) (17) produced pale, non CR-bind- 
ing colonies similar to those produced by a csgA 
mutant (9). Despite the pale-colony phenotype, 
MHR480 (csgE-), but not a csgE-A- double 
mutant, produced fibers that reacted with anti- 
CsgA. However, these structures were less 
abundant than wild-type curli and were archi- 
tecturally distinct in that they tended to arrange 
into rings (Fig. 3C). In the csgE- cells, no 
SDS-soluble CsgA could be detected, and the 
total amount of SDS-insoluble CsgA was mark- 
edly reduced (CsgA was detected in the FA- 
treated sample only after extended exposure) 
(Fig. 3B). A csgE- mutant was unable to donate 
CsgA subunits when cross-streaked against the 
CsgB' recipient (Fig. 3D). However, a 
csgE-mutant retained the ability to act as a 
recipient and guide CsgA polymerization, be- 
cause it stained CR-positive when cross- 
streaked against a CsgA+ donor (Fig. 3D). This 
staining was weaker than that observed on a 
CsgB' recipient cross-streaked against a 
CsgA+ donor (Fig. 3D), suggesting that in ad- 
dition to the CsgA stability defect, csgE- bac- 
teria are also partially defective in their ability to 
nucleate exogenous CsgA. A csgB-E- double 
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(Fig. 3D). 
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form and analyzed its polymerization in vitro. 
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Fig. 3. Curli biogenesis in the absence of CsgE and CsgF. (A) Negative-stain EM micrographs of MHR592 
(csgF-) bacteria grown on YESCA plates at 26?C for 48 hours. (B) CsgA visualized by Western analysis 
with anti-CsgA (16) and bacteria grown at 26?C on YESCA plates for 48 hours. Circular plugs of 8 mm, 
including cells and underlying agar (to collect soluble, unpolymerized and secreted CsgA), were collected 
and resuspended in 200 p.l of 1.5x SDS loading buffer either with or without prior FA treatment. The 
extracts loaded in each lane are as follows: lanes 1 and 2, MC4100 (wild type); lanes 3 and 4, LSR10 
(csgA-); lanes 5 and 6, MHR480 (csgE-); lanes 7 and 8, MHR261 (csgB-); and lanes 9 and 10 MHR592 
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phy (Fig. 4B). Immediately after elution from 
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prolonged incubation (4?C for 4 to 12 hours), 
the CsgA-his solutions became opaque and no- 
ticeably viscous. EM analysis revealed that fi- 
bers had formed that were similar to those 
produced by wild-type bacteria (Fig. 4D). The 
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CR and cause a red shift (Fig. 4E), signifying 
that they had adopted the cross 13 structure 
conserved in all amyloid fibers. CsgA purified 
from cells expressing csgEFG or only csgG 
formed CR-binding fibers with indistinguish- 
able kinetics (9). Thus, although CsgB and 
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REPORTS 

CsgEFG are required to facilitate efficient 
polymerization in vivo, they are not required for 
polymerization to proceed under these in vitro 
conditions. A critical function of the nucleation- 
precipitation assembly machinery may be to 
prevent CsgA polymerization within the cell 
and accelerate it at the cell surface. 

Our demonstration that E. coli can pro- 
duce extracellular amyloid-like fibers in- 
creases the recognized functional repertoire 
of amyloid fibers and provides a useful model 

into the formation of eukaryotic amyloids. 
This work also raises the intriguing possibil- 
ity that bacterial amyloids could play a role in 
certain human neurodegenerative and amy- 
loid-related diseases. Future experiments will 
further examine the role of CsgB, CsgE, and 
CsgF during the in vivo polymerization of 
curli, and their function will be used as a 
model to understand the formation of other 
amyloids. 
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At most bacterial promoters, RNA polymerase 
(RNAP) holoenzyme (aot233'coo) recognizes 
sequence elements centered -10 and -35 nu- 
cleotides upstream of the initiation point, with 
the uo subunit specifically contacting both pro- 
moter elements [reviewed in (1)]. Different sig- 
mas share four evolutionarily conserved re- 
gions, which can be further subdivided (1). 
Centrally located region 2.4 interacts with the 
-10 promoter element, and COOH-terminal re- 
gion 4.2 interacts with the -35 element (1). 
Because most free a subunits cannot recognize 
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promoters, conformational changes in core 
RNAP, o, or both must occur during holoen- 
zyme formation. Indeed, luminescence reso- 
nance energy transfer (LRET) measurements 
show that the Escherichia coli RNAP core in- 
duces a change in o"70, the principal or (2). As a 
result, the distance between o'70 regions 2.4 and 
4.2 increases dramatically, to match the dis- 
tance between the promoter elements (2). The 
mechanism by which the conformation of u. is 
altered upon holoenzyme formation has not 
been defined, nor have the core interaction sites 
that bring about this change been identified. 

A structure of core RNAP from eubacte- 
rium Thermus aquaticus has been determined 
(3). One structural element, the "flexible 
flap" (comprising conserved segment G of 
the RNAP (3 subunit), protrudes away from 
the body of the enzyme (Fig. 1). An E. coli 
RNAP mutant lacking (3 amino acids 900 
through 909 at the tip of the flap was previ- 
ously found to be defective in transcription 
initiation unless the initiation region was pre- 
melted (4). To further examine this defect, 
we deleted the entire flap from E. coli RNAP 
(5). Inspection suggests that the RNAP struc- 
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we deleted the entire flap from E. coli RNAP 
(5). Inspection suggests that the RNAP struc- 

ture should be minimally perturbed by the 
deletion (Fig. 1). 

Mutant RNAP was purified (6), and the 
ability of mutant holoenzyme (Eao70) to initi- 
ate transcription from T7 A2, a strong 
-10/-35 promoter, was tested (7). Wild-type 
Eo70 was active at T7 A2; in contrast, mutant 

E.70 was inactive (Fig. 2A). Transcription 
from the galP1 promoter was also tested. 
This promoter belongs to a class of promoters 
whose -10 elements are extended by an up- 
stream dinucleotide TG (8). o. region 4.2 is 
not required for recognition of extended -10 
promoters, due to additional RNAP contacts 
with the TG motif (8). Euo70 lacking the 
[3-flap was active at galP1 (Fig. 2A). These 
results suggest that the (3-flap is important for 
transcription from -10/-35 promoters, but is 
dispensable for transcription from extended 
-10 promoters. 

Wild-type Eo70 protected T7 A2 promoter 
DNA from deoxyribonuclease I (DNase I) di- 
gestion (Fig. 2B) (7). In contrast, the pattern of 
DNase I digestion in reactions containing mu- 
tant EO70 was similar to the naked DNA pattern, 
suggesting that Eu70 lacking the (3-flap is unable 
to form complexes with -10/-35 promoters. 

The restricted promoter specificity caused by 
the (3-flap deletion could be direct (i.e., the flap 
contributes directly to promoter recognition) or 
indirect (i.e., the flap positions o region 4.2 for 
interaction with the -35 element). The following 
experiments support the second possibility. We 
studied (o70 region 4.2-DNA interactions in 
galP1 complexes, where region 4.2 makes fa- 
vorable, but nonessential DNA interactions -35 
base pairs (bp) upstream of the initiation point 
(8). Overall, the galP1 complexes formed by 
mutant EO70 appeared similar to the wild-type 
complexes (Fig. 2C) (8). However, DNA be- 
tween positions -34 and -39 was protected in 
the wild-type, but not in the mutant complexes 
(Fig. 2C, arrowheads), suggesting that in the 
absence of the 3-flap, interactions between uo 
region 4.2 and galP1 upstream DNA do not 
occur. 

To show directly that the (3-flap is required 
for the conformational change in a that occurs 
upon holoenzyme formation, we used LRET, 
which uses energy transfer between a lumines- 
cent donor and fluorescent acceptor to deter- 
mine atomic-scale distances between the probes 
(9). LRET donor and acceptor probes were in- 
corporated into different a domains, and inter- 
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for the conformational change in a that occurs 
upon holoenzyme formation, we used LRET, 
which uses energy transfer between a lumines- 
cent donor and fluorescent acceptor to deter- 
mine atomic-scale distances between the probes 
(9). LRET donor and acceptor probes were in- 
corporated into different a domains, and inter- 
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In bacteria, promoter recognition depends on the RNA polymerase uo subunit, 
which combines with the catalytically proficient RNA polymerase core to form 
the holoenzyme. The major class of bacterial promoters is defined by two 
conserved elements (the -10 and -35 elements, which are 10 and 35 nucle- 
otides upstream of the initiation point, respectively) that are contacted by uo 
in the holoenzyme. We show that recognition of promoters of this class depends 
on the "flexible flap" domain of the RNA polymerase ( subunit. The flap 
interacts with conserved region 4 of uo and triggers a conformational change 
that moves region 4 into the correct position for interaction with the -35 
element. Because the flexible flap is evolutionarily conserved, this domain may 
facilitate promoter recognition by specificity factors in eukaryotes as well. 
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