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However, we caution against interpreting the 
decadal variability as evidence of greenhouse 
gas warming. Whether the changes seen in the 
radiative balance in the last two decades are the 
result of natural variability or are a response to 
global change remains to be determined. A ma- 
jor step in understanding these changes is given 
in a companion paper in this issue (21), which 
offers a hypothesis for the link between these 
radiative balance changes and corresponding 
changes in the dynamical climate system, a sys- 
tem that appears to be much more variable than 
previously thought. 
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Distinguishing Inchworm and 

Hand-Over-Hand Processive 

Kinesin Movement by Neck 

Rotation Measurements 

Wei Hua,1 Johnson Chung,2 Jeff Gellesl2* 

The motor enzyme kinesin makes hundreds of unidirectional 8-nanometer steps 
without detaching from or freely sliding along the microtubule on which it moves. 
We investigated the kinesin stepping mechanism by immobilizing a Drosophila 
kinesin derivative through the carboxyl-terminal end of the neck coiled-coil domain 
and measuring orientations of microtubules moved by single enzyme molecules at 
submicromolar adenosine triphosphate concentrations. The kinesin-mediated mi- 
crotubule-surface linkage was sufficiently torsionally stiff (-2.0 ? 0.9 x 10-20 
Newton meters per radian2) that stepping by the hypothesized symmetric hand- 
over-hand mechanism would produce 180? rotations of the microtubule relative 
to the immobilized kinesin neck. In fact, there were no rotations, a finding that is 
inconsistent with symmetric hand-over-hand movement. An alternative "inch- 
worm" mechanism is consistent with our experimental results. 
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The motor enzyme kinesin moves membrane- 
bound organelles along microtubules in eukary- 
otic cells (1). Microtubule-based movements of 
organelles in vivo may be driven by as few as 
one motor enzyme molecule (2). Observations 
of the movement of single kinesin molecules in 
vitro demonstrate that the enzyme is well adapt- 
ed to functioning as an isolated single molecule 
in living cells. First, the enzyme is processive: 
The kinesin undergoes multiple catalytic turn- 
overs without detaching from the microtubule 
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(3, 4), facilitating efficient organelle transport 
over long distances (5). Second, the duty ratio 
of kinesin is high: The enzyme cannot freely 
slide in the direction of the microtubule axis 
during most or all of its enzymatic cycle (6. 7) 
and thus is able to move forward even when 
opposed by the substantial elastic forces im- 
posed by mechanical obstructions to organelle 
movements inside cells. 

The mechanism by which single kinesin 
molecules achieve processive, high-duty-ra- 
tio movement is not well understood. Both of 
the enzyme's two identical head domains are 
required for such movement: the kinesin one- 
headed homolog KIF1A is processive but has 
low duty ratio (8-10), and truncated kinesin 
constructs with only one head have low duty 
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ratios and little or no processivity [(7, 11, 12) 
but see also (13)]. These observations suggest 
that kinesin retains its grip on the microtubule 
through a mechanism in which head move- 
ment is coordinated so that at least one of the 
two heads is tightly bound to the microtubule 
at every stage of the catalytic cycle. It has 
been hypothesized that the two heads alter- 
nately move past each other (Fig. IA). In 
such a symmetric hand-over-hand mecha- 
nism, the three-dimensional structure of the 
kinesin-microtubule complex is identical at 
the beginning of each adenosine triphosphate 

(ATP) hydrolytic cycle, except that in each 
cycle the two subunits (and therefore the two 
heads) swap places (14-18). Consequently, 
the neck coiled-coil domain, which links the 
heads together, rotates 180? around its axis 
for every 8-nm step (Fig. 1A, magenta ar- 
rows) (18). Analogous alternating-sites 
mechanisms have been hypothesized to ex- 
plain the behavior of other dimeric processive 
motor enzymes such as myosin V (19) and 
Rep helicase (20). An alternative hypothesis 
is that kinesin head movement is coordinated 
through an "inchworm" mechanism (Fig. 1B) 

A Symmetric hand-over-hand 

1 L. :' . 
8 nm 

consumes I ATP consumes 1 ATP 
1 Cycle: 

moves 8 nm moves 8 nm 

B Inchworm 

Fig. 1. Examples of two alternative classes of mechanisms for processive, high-duty ratio movement by 
kinesin. Kinesin hydrolyzes one molecule of ATP and moves 8 nm in a single catalytic cycle. In both 
examples, the enzyme moves along a microtubule protofilament consisting of alternating (x (gray) and 
p (white) tubulin subunits in such a way that at least one of the two identical head domains (colored 
red and blue for identification) is bound to the microtubule at all times. In a symmetric hand-over-hand 
mechanism (A), the two heads undergo identical chemomechanical reaction sequences out of phase 
with each other so that the heads alternate in the leading and trailing positions at the beginnings of 
consecutive cycles. Consequently, each cycle changes the orientation (magenta arrow) of the neck 
coiled-coil domain by 180?. By contrast, in an inchworm mechanism (B), the two heads retain their 
nonequivalent positions at the beginnings of each successive cycle (in the example shown here, the red 
head is always in front of the blue). The cycle of chemomechanical reactions is thus different in the two 
heads, and the neck orientation does not change from the beginning of one cycle to the next. 
Postulation of particular structures or mechanical properties for the intermediates formed during the 
cycles (for example, those shown in brackets) is not necessary to differentiate between the two types 
of mechanisms because the types are defined only by the structures of the kinesin-microtubule complex 
at the beginning of successive cycles. 

(21-23) in which the structure of the kinesin- 
microtubule complex is again identical at the 
beginning of each cycle but the two heads do 
not swap places. Thus, there is no net neck 
rotation in each cycle (Fig. 1B, magenta ar- 
rows). Such a mechanism differs fundamen- 
tally from the symmetric hand-over-hand 
type in that the two identical subunits of the 
kinesin homodimer are maintained in differ- 
ent environments and therefore have non- 
equivalent enzymatic cycles. 

To differentiate between these two types of 
mechanisms, we immobilized kinesin molecules 
by the distal end of the neck and examined the 
extent of microtubule rotation relative to the 
immobilized neck (Fig. 2A). The biotinated ki- 
nesin derivative K448-BIO (7, 11, 15, 24) was 
attached to a streptavidin-coated glass cover slip 
(25) at low surface density, and the orientations 
of microtubules interacting with the surface- 
attached enzyme molecules were then observed 
by light microscopy, a modification of the meth- 
od used by Hunt and Howard (26) to study 
kinesin torsional stiffness. In the presence of 1 to 
4 mM concentrations of the kinesin inhibitor 
adenylyl imidodiphosphate (AMP-PNP), 100% 
of the microtubules that remained bound at the 
surface pivoted around a single point (Fig. 2B), 
demonstrating that they are attached to single 
molecules of kinesin (3, 27). 

All microtubules pivoted over a limited 
range of orientations (Fig. 2C); o, the root- 
mean-square orientation angle, was 44? ? 
18? (mean ? SD) (Table 1). Assuming that 
the linkage of the microtubule to the surface 
through kinesin and streptavidin behaves like 
a simple torsion spring, the linkage torsional 
stiffness (K) can be calculated from the equi- 
partition theorem (26, 28) as (kT/ro2) = 
2.0 + 0.9 X 10-20 N m rad-2, where k is the 
Boltzmann constant, T is the absolute temper- 
ature, and the angle brackets indicate that the 
quantity is the average over the sample of 
microtubules analyzed (29). When the kine- 
sin molecules were instead bound nonspecifi- 

A microtubule B 
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Fig. 2. Torsional Brownian motion of a microtubule bound to a single surface-attached kinesin 
molecule in the presence of 1 mM AMP-PNP. Schematic (A) illustrates the experimental sample in 
which a microtubule (cylinder) is bound to the head(s) of a kinesin molecule specifically attached 
to a streptavidin (white squares)-coated glass cover slip (gray) through one or both biotin (black 
circles) moieties incorporated at the distal end of the neck coiled coil (27). Light microscope images 
(33.3-ms acquisition time; 1-s interval between images shown) of a 1.8-,m-long microtubule (B) 
demonstrate that it pivots around a single point (cross) on the surface through a restricted range 
of angles (36) (C). MT, microtubule. 
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Table 1. Movement of microtubules interacting with single kinesin molecules. 

Nucleotide MP 400 nM ATP 5 nM ATP AMP-PNP 

Number of microtubules analyzed 17 19 24 
Total duration (s) 4,595 2,091 29,128 
Width of orientation distribution 

RMS orientation, (oy) I SD* 44? + 18? (N = 17) 24? + 10? (N = 19) 31? 0 11? (N - 24) 
Fraction of measurements with 0o - 90? < 0 < 0o + 90?t 99.3% 100% 99.9% 

Translation velocity (nm s ') 
Measured + SE (38)* 0.05 + 0.01 (N = 5),? 5.3 + 0.9 (N = 19) 0.09 + 0.01 (N -- 8)+? 
Expected 0 7.11| 0.09|i 

Total 8-nm steps? Not applicable 1,385 328+ 

*Average of values measured for N microtubules. 9tO is the microtubule orientation, 0, averaged over the whole data record. +All data records shorter than 350 s [the total 
duration of which was 2411 s (AMP-PNP) or 4246 s (5 nM ATP)] were excluded to increase precision. ?Significantly different from each other (P < 0.016). lICalculated as 
(Vma,/Km)A, where A is the ATP concentration, Km = 46 pFM, and VmaX = 819 nm s-~ (15). ?|Translation velocity multiplied by total duration divided by 8 nm. 

cally to the surface, the microtubules exhib- 
ited Brownian rotation over >360? (Fig. 3), 
as observed previously with full-length kine- 
sin (26), suggesting that the restricted tor- 
sional Brownian motion observed with spe- 
cifically attached enzyme molecules is not 
due to obstruction of microtubule movement 
by surface irregularities. Taken together, the 
results illustrated in Figs. 2 and 3 suggest that 
the head-microtubule connection, the neck- 
streptavidin connection, and the enzyme mol- 
ecule itself all are torsionally stiff. 

To determine whether single catalytic cycles 
of kinesin entail net rotation of the neck coiled 
coil relative to the microtubule, we examined 
orientations of microtubules moved by single 
enzyme molecules at 400 nM ATP, a concen- 
tration 115-fold lower than the Michaelis con- 
stant (Kin) (15). Under these conditions, the 
kinesin spends >99% of its time poised at the 
beginning of its catalytic cycle, waiting for sub- 
strate to bind. Individual catalytic turnovers 
(which have a mean duration of -10 ms) are 
well separated by long intervals (which have a 
mean duration of >1 s) in which the enzyme 
remains bound to a fixed position on the micro- 
tubule (15). In these experiments, microtubules 
glide past a single pivot point on the cover slip 
surface (Fig. 4A) and release from the surface 
when the microtubule end reaches this same 
single pivot point (3). The width of the distribu- 
tion of microtubule orientations in 400 nM ATP 
was similar to that seen in AMP-PNP (Table 1). 
Thus, the cover slip-microtubule linkage has a 
well-defined equilibrium orientation and does 
not freely swivel when the kinesin molecule is 
poised at the beginning of the cycle. The calcu- 
lated rigidity of the linkage is sufficiently high 
that the torsional relaxation time for a 2-plm- 
long microtubule pivoting around its center to 
reach its equilibrium position is < 1 s (30). We 
collected movement records corresponding to 
>1000 8-nm steps (Table 1); if the catalytic 
cycle entails a 180? rotation of the neck relative 
to the microtubule, the short relaxation time 
dictates that these records would contain numer- 
ous observations of 180? microtubule rotations. 
Strikingly, no such rotations were observed; the 
microtubules were always oriented in approxi- 

mately the same direction (Fig. 4B). This obser- 
vation directly conflicts with the behavior 
predicted for a symmetric hand-over-hand 
mechanism. 

To further improve our ability to detect even 
small (<<180?) neck rotations associated with 
kinesin steps, we repeated the experiments at 5 
nM ATP, a condition in which kinesin steps are 
separated by an average interval of 89 s (Fig. 4C 
and Table 1). Again, no 180? rotations were 
observed, even though we examined microtu- 
bule movements corresponding to >300 8-nm 
steps. No experimentally significant discontinui- 
ties of any size were detected in most microtu- 
bule orientation records, indicating that step- 
associated rotations, if any, are considerably 
smaller than the (ocr) of 31? (Table 1) for these 
records. 

For data at both 5 and 400 nM ATP, the 
fraction of measured orientations falling with- 
in + 90? from the mean is >99% (Table 1), as 
would be expected from a mechanism in which 
no rotation occurs, not -50%, as predicted by 
the symmetric hand-over-hand mechanism. 

No systematic changes in to- with time were 
observed in individual microtubule movement 
records, even for those at 400 nM ATP in which 
the microtubule moved from pivoting near the 
microtubule center to pivoting at or near its end. 
These observations are consistent with our pro- 
posal that the extent of pivoting is limited by the 
surface linkage torsional stiffness; they are in- 
consistent with a possible alternative interpreta- 
tion in which pivoting is restricted by collision 
of the microtubule ends with the surface. To 
confirm that the limited rotation we observed 
was not a consequence of some unknown geo- 
metrical constraint specific to the microtubule 
pivoting experiments used here, we indepen- 
dently measured the extent of kinesin neck ro- 
tation from one 8-nm step to the next at sub- 
saturating ATP concentrations by observing the 
motion of asymmetric bead aggregates moved 
by kinesin along immobilized microtubules 
(31). Again, step-associated neck rotation was 
found to be small or zero. The same result was 
obtained in further experiments in which the 
rotation of spherical fluorescent beads coupled 
to single kinesin molecules moving on immobi- 
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Fig. 3. Rotational Brownian motion in 1 mM 
AMP-PNP of a microtubule bound to a kinesin 
molecule nonspecifically adsorbed to the cover 
slip surface (37). Nonspecific attachment was 
achieved by saturating the streptavidin-coated 
surface with excess biotin (27) and then in- 
creasing the enzyme concentration 80-fold and 
the incubation time threefold over that used 
for specific attachment. A range of rotation 
larger than 360? was measured in 10 of 10 such 
microtubules studied. MT, microtubule. 

lized microtubules or demembranated axon- 
emes was monitored by fluorescence polariza- 
tion techniques (32). 

The observation that the kinesin neck coiled 
coil does not rotate 180? from the beginning of 
one step to the beginning of the next is incon- 
sistent with the symmetric hand-over-hand 
model (Fig. 1A), in which the two heads swap 
leading and trailing positions in consecutive cy- 
cles. This conclusion depends only on the es- 
sential feature of this model: that the three- 
dimensional structure of the kinesin-microtu- 
bule complex is identical (except for translation 
along the microtubule lattice and the inter- 
change of the two heads in alternate steps) at the 
beginning of each cycle. Thus, the conclusion is 
independent of any assumptions about the de- 
tails of the movements that occur transiently 
during the cycle. For example, it is immaterial 
whether one assumes that the trailing head al- 
ways passes to the same side of the leading one 
(Fig. 1A, green arrows), alternates the sides on 
which it passes. or chooses sides randomly (I l'. 
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Our observations instead are consistent with the 
inchworm type of mechanism (Fig. IB), in 
which the structure of the kinesin-microtubule 
complex is identical at the beginning of every 
cycle and the heads do not swap places. 

Both mechanisms shown in Fig. 1 adhere to 
the simplifying assumption that the three-di- 
mensional geometry of the kinesin-microtubule 
complex is identical at the beginning of each 
8-nm step. However, if we drop this assumption, 
we can consider yet a third type of mechanism 
(21), in which the neck-linker domain (or any 
other structure through which the heads are 
attached to the surface in our experiments) ex- 
ists in two distinct, stable conformations that 
alternate in successive enzymatic cycles. In that 
case, hand-over-hand alternation of the head 
positions in successive cycles can produce the 
-0? microtubule rotation with each step ob- 
served in our experiments, provided that the two 
conformations differ in precisely such a way as 
to cancel the 180? reorientation induced by head 
alternation. We call this type of mechanism 
asymmetric hand-over-hand to emphasize that 
the three-dimensional structures at the begin- 
ning of consecutive 8-nm steps are different 
(i.e., not symmetry related). A concrete example 
of such a mechanism is that proposed by Ho- 
enger et al. (33). To be consistent with the 
known properties of kinesin movement, the two 
postulated linker conformations must satisfy 
stringent criteria in addition to nearly exact com- 
pensation for the rotation caused by head inter- 
change: (i) The angle between the microtubule 
axis and the coiled coil must not differ in the two 
conformations; otherwise, consecutive steps ob- 
served in bead movement experiments would 
not be uniformly 8 nm as observed (14, 15, 34). 
(ii) The equatorial angle of the coiled coil 
around the microtubule circumference also must 
not change, because beads moved along immo- 
bilized microtubules by single kinesin mole- 
cules do not wobble from side to side in alter- 

nate steps (11, 31). The radii of the beads used 
in the cited experiments are sufficiently large 
(>50 nm) that changes of even -5? in either 
angle would likely be detected (11). (iii) A 
high-energy barrier must block any interconver- 
sion of the two conformations that is not accom- 
panied by catalytic turnover. Even spontaneous 
interconversion rates of 10-3 s-1 would pro- 
duce detectable 180? rotations of microtubules 
in both the AMP-PNP and the limiting ATP 
experiments summarized in Table 1. (iv) The 
two stable structures must unfailingly (>99% of 
the time) alternate with each adenosine triphos- 
phatase (ATPase) turnover; otherwise, 180? ro- 
tations would be observed in the 400 nM ATP 
experiments (Table 1). Thus, although our ex- 
perimental results do not rigorously exclude an 
asymmetric hand-over-hand mechanism, we re- 
gard as improbable the existence of two struc- 
tures that simultaneously satisfy all of the re- 
quirements outlined above. 

In an inchworm mechanism, the two heads 
ofkinesin remain in different environments (one 
always leading, the other always trailing) during 
continuous processive movement. The differ- 
ence in environment implies that the chemical 
reactions taking place in the ATPase active sites 
of the two heads need not be identical. Indeed, 
the reactions cannot be identical-in a single 
cycle of the inchworm mechanism, each of the 
two heads moves forward 8 nm, yet only a 
single molecule of ATP is consumed (Fig. lB) 
(14, 15). Thus, the inchworm mechanism makes 
the unorthodox prediction that only one of ki- 
nesin's two heads is an active ATPase during 
processive movement. Observations of ATP- 
stimulated adenosine diphosphate (ADP) re- 
lease from kinesin-microtubule complexes [for 
example, in (17)] are sometimes taken as sup- 
porting hand-over-hand mechanisms, in which 
both heads hydrolyze ATP. However, such re- 
sults are also consistent with processive move- 
ment driven by ATP hydrolysis in only one of 

by other motor enzymes may be necessary. 
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Partitioning of the Matrix 
Fraction of the Golgi Apparatus 
During Mitosis in Animal Cells 
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The Golgi apparatus is partitioned during mitosis in animal cells by a process of 
fragmentation, dispersal, and reassembly in each daughter cell. We fractionated the 
Golgi apparatus in vivo using the drug brefeldin A or a dominant-negative mutant 
of the Sar1p protein. After these treatments, Golgi enzymes moved back to the 
endoplasmic reticulum, leaving behind a matrix of Golgi structural proteins. Under 
these conditions, cells still entered and exited mitosis normally, and their Golgi 
matrix partitioned in a manner very similar to that of the complete organelle. 
Thus, the matrix may be the partitioning unit of the Golgi apparatus and may 
carry the Golgi enzyme-containing membranes into the daughter cells. 
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The Golgi apparatus is partitioned during mitosis in animal cells by a process of 
fragmentation, dispersal, and reassembly in each daughter cell. We fractionated the 
Golgi apparatus in vivo using the drug brefeldin A or a dominant-negative mutant 
of the Sar1p protein. After these treatments, Golgi enzymes moved back to the 
endoplasmic reticulum, leaving behind a matrix of Golgi structural proteins. Under 
these conditions, cells still entered and exited mitosis normally, and their Golgi 
matrix partitioned in a manner very similar to that of the complete organelle. 
Thus, the matrix may be the partitioning unit of the Golgi apparatus and may 
carry the Golgi enzyme-containing membranes into the daughter cells. 

There are two popular models of the partitioning 
of the Golgi apparatus during mitosis in animal 
cells, which differ as to the nature of the parti- 
tioning units. The first model argues that the 
units are the Golgi membranes themselves, 
which break down at the onset of mitosis, yield- 
ing vesicle clusters and shed vesicles, either or 
both of which have been suggested as the means 
of inheriting the Golgi (1-4). The second model 
argues that the partitioning units are endoplas- 
mic reticulum (ER) membranes, with the Golgi 
merging with the ER during prometaphase and 
emerging from it during telophase (5). 

Attempts to distinguish between these two 
models have yielded contradictory results, par- 
ticularly when Golgi enzymes have been used 
to trace the partitioning process (1-3, 5-7). We 
therefore decided to focus on another class of 
markers, the Golgi matrix proteins, which in- 
clude the golgin and GRASP families of vesicle 
tethering and cistemal stacking proteins (8). In 
the presence ofbrefeldin A (BFA), these matrix 
proteins can be separated from Golgi enzymes 
(9). The enzymes move to the ER, whereas 
matrix proteins appear in dispersed punctate 
structures that may become associated with ER 
export sites (10). Separation also occurs in the 
presence of a dominant-negative Sarlp protein, 
which traps the Golgi enzymes as they cycle 
through the ER (1, 5, 11, 12). The matrix 
proteins slowly disperse throughout the cyto- 
plasm, although there is evidence that some 
become associated with the ER (13), especially 
when a guanosine diphosphate-restricted form 
of a dominant-negative Sarlp is used (10). 

When BFA-treated cells are injected with 
Sarldn (a guanosine triphosphate-restricted 
form) and the BFA is washed out, the matrix 
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proteins re-form a ribbon-like structure near the 
nucleus that resembles the Golgi apparatus 
even though Golgi enzymes are trapped in the 
ER (9). This suggests that the matrix may pro- 
vide a scaffold for the Golgi enzyme-contain- 
ing membranes (9). The matrix might also pro- 
vide the means of partitioning the Golgi during 
mitosis, so we asked whether it would partition 
between daughter cells in the absence of the 
enzyme-containing membranes that normally 
populate it. We first tested the effect of BFA on 
progression through mitosis, using time-lapse 
microscopy of synchronized normal rat kidney 
(NRK) cells. BFA had no effect on the time 
elapsed from prometaphase to telophase/Gt 
[control cells, 32 +_ 2 (SD) min; BFA-treated 
cells, 33 + 2 (SD) min] when added about 
90 min before the mitotic peak. which is 
sufficient time to separate enzyme and ma- 
trix proteins before entry into mitosis (14). 

Unsynchronized cells were then treated with 
BFA for 90 min, fixed, and labeled for the Golgi 
matrix marker GM130, microtubules, and DNA. 
to determine the mitotic phase (15). After treat- 
ment with BFA, the matrix fraction of the inter- 
phase Golgi was a little more fragmented, but 

Table 1. Distribution of GM130 in mitotic NRK 
cells. BFA was added, 90 min before fixation, to 
exponentially growing NRK cells, which were then 
labeled with polyclonal antibodies to GM130 and 
secondary antibodies coupled to Alexa Fluor 488. 
Total fluorescence on each side of the equatorial 
plate in metaphase cells and in each daughter cell 
pair in telophase was quantified, and background 
fluorescence was subtracted. For each pair of val- 
ues, the percentage deviation from 50% was cal- 
culated, and the median deviation was determined 
from the number (n) of pairs evaluated. 

Median deviation from equality 

+ BFA Control 

Metaphase 2.8% (n = 87) 3.2% (n =- 79) 
Telophase/G, 3.8% (n = 56) 3.7% (n = 57) 

proteins re-form a ribbon-like structure near the 
nucleus that resembles the Golgi apparatus 
even though Golgi enzymes are trapped in the 
ER (9). This suggests that the matrix may pro- 
vide a scaffold for the Golgi enzyme-contain- 
ing membranes (9). The matrix might also pro- 
vide the means of partitioning the Golgi during 
mitosis, so we asked whether it would partition 
between daughter cells in the absence of the 
enzyme-containing membranes that normally 
populate it. We first tested the effect of BFA on 
progression through mitosis, using time-lapse 
microscopy of synchronized normal rat kidney 
(NRK) cells. BFA had no effect on the time 
elapsed from prometaphase to telophase/Gt 
[control cells, 32 +_ 2 (SD) min; BFA-treated 
cells, 33 + 2 (SD) min] when added about 
90 min before the mitotic peak. which is 
sufficient time to separate enzyme and ma- 
trix proteins before entry into mitosis (14). 

Unsynchronized cells were then treated with 
BFA for 90 min, fixed, and labeled for the Golgi 
matrix marker GM130, microtubules, and DNA. 
to determine the mitotic phase (15). After treat- 
ment with BFA, the matrix fraction of the inter- 
phase Golgi was a little more fragmented, but 

Table 1. Distribution of GM130 in mitotic NRK 
cells. BFA was added, 90 min before fixation, to 
exponentially growing NRK cells, which were then 
labeled with polyclonal antibodies to GM130 and 
secondary antibodies coupled to Alexa Fluor 488. 
Total fluorescence on each side of the equatorial 
plate in metaphase cells and in each daughter cell 
pair in telophase was quantified, and background 
fluorescence was subtracted. For each pair of val- 
ues, the percentage deviation from 50% was cal- 
culated, and the median deviation was determined 
from the number (n) of pairs evaluated. 

Median deviation from equality 

+ BFA Control 

Metaphase 2.8% (n = 87) 3.2% (n =- 79) 
Telophase/G, 3.8% (n = 56) 3.7% (n = 57) 
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