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It is widely assumed that variations in Earth's radiative energy budget at large 
time and space scales are small. We present new evidence from a compilation 
of over two decades of accurate satellite data that the top-of-atmosphere 
(TOA) tropical radiative energy budget is much more dynamic and variable than 
previously thought. Results indicate that the radiation budget changes are 
caused by changes in tropical mean cloudiness. The results of several current 
climate model simulations fail to predict this large observed variation in tropical 
energy budget. The missing variability in the models highlights the critical need 
to improve cloud modeling in the tropics so that prediction of tropical climate 
on interannual and decadal time scales can be improved. 
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Earth's climate system is driven by a radia- 
tive energy balance between the solar or 
shortwave (SW) radiation absorbed by Earth 
and the thermal infrared or longwave (LW) 
radiation emitted back to space. The balance 
both modifies and is modified by the compo- 
nents of the Earth-atmosphere system such as 
clouds, the surface, and the atmosphere (1). 
Therefore, the TOA radiation budget is cru- 
cial in determining climate variability and 
feedbacks, whereas its measurement provides 
a severe test of our ability to represent phys- 
ical processes important for simulations of 
future climate. 

A new set of Earth radiation balance data 
is now being provided by the NASA CERES 
(Clouds and the Earth's Radiant Energy Sys- 
tem) instrument on the Tropical Rainfall 
Measuring Mission (TRMM) for 8 months in 
1998 and by the Terra satellite mission that 
began in March 2000 and is expected to 
continue through 2007 (2, 3). In addition, 
with the 16-year record of the Earth Radia- 
tion Budget Satellite (ERBS), it is now pos- 
sible to examine 22 years of accurate satellite 
observed broadband radiative fluxes (4-6). 
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Anomalies in tropical mean broadband ther- 
mal LW flux emitted by the Earth have been 
determined from this 22-year record and are 
shown in Fig. 1. 

Calibration absolute accuracies for the 
seven broadband radiometers in Fig. 1 are 
estimated to be roughly 1% for the pre- 
CERES instruments and 0.5% for the newer 
records. The anomaly results during data 
overlap periods from all instruments are con- 
sistent to within about 1 Wm-2 or about 
0.5% of the 253 Wm-2 ERBE tropical mean 
LW flux. Only stability of calibration enters 
the anomaly record for the ERBS nonscanner 
(NS) data, whereas both stability and abso- 
lute calibration affect the scanner (SC) anom- 
aly records from five different instruments. 

The LW anomaly record in Fig. 1 shows 
much larger variations than expected, espe- 
cially for the 1997/1998 El Ninio event, which 
reaches a tropical mean anomaly of 8 Wm-2, 
the largest seen to date. Other notable short- 
term anomalies are the rapid drop in LW flux 
resulting from the Mount Pinatubo Eruption 
in 1991 (7), followed by the expected 2-year 
recovery period as the volcanic aerosols are 
removed from the stratosphere and upper tro- 
posphere. Although the 1983 El Ninio event is 
thought to be comparable in magnitude to the 
1997/1998 E1 Ninio, there is no comparable 
tropical mean LW flux anomaly. A plausible 
hypothesis is that the earlier 1982 El Chichon 
eruption caused a reduction in LW flux sim- 
ilar to that from the Mount Pinatubo Eruption 
in 1991. The resulting LW fluxes in 1982 to 
1984 would, in this case, be a partial cancel- 
lation of the El Chichon and E1 Ninfo signals. 
But the most surprising result in the figure is 
an apparent drop of about 2 Wm-2 in LW 
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flux from the late 1970s to the mid 1980s, 
followed by a rise of about 4 Wm-2 from the 
late 1980s to the mid to late 1990s. Indeed, if 
the Pinatubo volcanic reduction from 1991 to. 
1993 is removed, the tropics appear to under- 
go an increase in LW flux from 1989 to 1994, 
followed by a relatively steady value from 
1994 through 2001, with the exception of the 
large 1997/1998 El Niiio event. 

Because radiative forcings of 1 Wm-2 or 
less are important for climate change prediction, 
natural variability of 4 Wm-2 in the LW part of 
the tropical radiation budget is considered a 
major change. The reality of these large changes 
is supported by the consistency of the results 
from seven independent broadband radiation in- 
struments, all supporting the same pattern of 
decadal variability. Though there are two nar- 
row spectral band radiometer sources of LW 
estimates, these are not considered as accurate 
as the broadband LW fluxes. The latest versions 

Fig. 1. Satellite record 
of tropical mean (20?S 
to 20?N latitude) 
anomalies in broad- 
band thermal emitted 
LW flux. Anomalies 
are referenced to the 
ERBS scanner baseline 
period of 1985 
through 1989, which 
most climate models 
use as a baseline for 
comparison (5). Re- 
sults are shown from 
seven different broad- 
band instruments on 
six spacecraft mis- 
sions (6). 

Fig. 2. Satellite record 
of tropical mean (20?S 
to 20?N latitude) 
anomalies in broad- 
band thermal emitted 
LW flux, solar reflect- 
ed SW flux, and net 
radiative flux. Net flux 
is defined as solar in- 
solation - SW-reflect- 
ed flux - LW-emitted 
flux. A smaller set of 
satellites is shown for 
SW- and net-radiative 
flux anomalies. Only 
those satellites whose 
orbits systematically 
sample the entire di- 
urnal cycle in about a 
month, so the large di- 
urnal cycle of solar re- 
flected fluxes can be 
accurately determined 
across the entire trop- 
ics (25). 
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of these narrowband data sets disagree with each 
other as well as with the broadband data when 
used to determine tropical decadal changes in 
LW flux (8). Because the ERBS NS record 
spans the entire period and includes regular 
solar constant measurements by both SW and 
Total channels, we re-examined this record ex- 
tensively for any potential problems with cali- 
bration and found none at levels higher than 0.2 
to 0.5 Wm-2 (9). Therefore, we conclude that it 
is unlikely that this decadal variability can be 
explained by instrument calibration changes. 

Is this decadal increase of 4 Wm-2 a signal 
of global warming? Certainly, it is not a direct 
one. The flux changes are far too large to be 
explained by the small surface and atmosphere 
warming over this time period, which will tend 
to be offset by increased CO2 and water vapor 
greenhouse gas trapping. This can be demon- 
strated with the use of CERES scanner data in 
1998 and the ERBE scanner data in 1985-1989 
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used in Fig. 1. These data have sufficiently 
small fields of view (10 and 40 km, respective- 
ly) to allow separation of the data into clear-sky 
and cloudy-sky regions of the tropics. Recent 
analysis of the clear-sky scanner LW flux data 
(10) showed that changes during and after the 
1998 El Ninio were consistent with the observed 
changes in sea surface temperature (SST) and 
water vapor. By the end of the El Nifno in July 
1998, the clear-sky LW fluxes measured by 
CERES agreed with the ERBE climatological 
July 1985-1989 average values to within 0.5 
Wm-2. The largest anomaly of clear-sky LW 
fluxes reached only 2 Wm-2 during the El Niiio 
peak of February and March 1998, whereas the 
total anomaly in Fig. 1 reaches about 8 Wm-2. 
This leaves the factor of 4 to 8 larger anomalies 
shown in Fig. 1 to be explained by changes in 
the cloudy-sky conditions in the tropics. 

Though 8 Wm-2 is large for a clear-sky 
radiation anomaly, clouds can cause changes of 
up to 200 Wm-2 or larger in both LW emitted 
and diurnally averaged SW reflected radiation 
fields for deep, thick clouds in the tropics. The 
LW-emitted flux changes are caused by cloud 
increases in greenhouse trapping, whereas SW- 
reflected flux changes are caused by cloud in- 
creases in reflected solar energy. The net radi- 
ative effect of clouds is a balance between the 
LW greenhouse and SW cooling effects. 

Figure 2 shows the observed broadband 
anomalies for LW-emitted, SW-reflected, and 
net radiation flux changes in the tropics. Aero- 
sols from the Mount Pinatubo eruption cause the 
large increase in SW-reflected flux in 1991 to 
1993. As tropical mean LW-emitted flux in- 
creases in the mid to late 1990s, SW-reflected 
flux decreases. Both effects are consistent with a 
decrease in tropical cloudiness. Figure 2 also 
shows evidence of increased seasonal variabili- 
ty. To more clearly isolate these variations in 
Fig. 2 from El Nifio and Mount Pinatubo sig- 
nals, Fig. 3 shows the average tropical mean 
LW flux, SW flux, and SW albedo anomaly 
averaged separately for each seasonal month 
over the 4-year period 1994 through 1997, 
which contains the large semi-annual anomalies 
in SW and Net fluxes. The results show a de- 
crease of more than 0.01 in tropical mean albedo 
in the spring and fall seasons, but little change in 
the summer and winter seasons, indicating a 
changed phasing of seasonal cloudiness in the 
tropics (11). Because Fig. 3 shows that the LW 
flux increase in 1994 through 1997 is almost 
constant with season, we further conclude that 
the seasonal cycle in albedo is likely dominated 
by changes in low-level cloudiness that have 
little effect on the LW fluxes but a large impact 
on the SW fluxes. 

The above analysis indicates strong evi- 
dence for decadal variations in the radiative 
balance components in the tropical atmo- 
sphere. These changes are sufficiently large 
that, in principle, they should be seen in 
climate model predictions. We have tested 
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this hypothesis by analyzing decadal integra- 
tions of the atmospheric model components 
of four climate models and one weather as- 
similation model, forced by the observed 
SSTs (12) for the 1985 through 1998 period. 
The integrations ignore the effects of volca- 
nic aerosols. The climate models include the 
Hadley Centre atmospheric climate model 
HadAM3 (13, 14), the National Center for 
Atmospheric Research (NCAR) model 
CCM3 (15), the Geophysical Fluid Dynamics 
Laboratory (GFDL) Climate Model (16), and 
the GFDL EP (Experimental Prediction) 
model (17). We also included the National 
Center for Environmental Prediction 
(NCEP)-NCAR 50-Year Reanalysis, which 
uses the NCEP 4-D Assimilation Model (18). 
For all model runs, the tropical mean anom- 
alies were calculated as in the satellite data, 
using the 1985 through 1989 period as the 
baseline. 

Figure 4 compares the atmospheric model 
results to the ERBS NS satellite observations 
presented in Fig. 2. There is remarkably little 
variation in the tropical mean fluxes from the 
models when compared to the data. Even near 
the peak of the 1997/1998 El Ninio event, in 
early 1998, the tropical mean model response is 
only about one-third that of the observations. 

No significant decadal variability is ex- 
hibited by the climate and reanalysis models. 
Correlation coefficients of the observed and 
modeled tropical mean LW flux anomalies 
are significant at the 95% level only for the 
Hadley Centre model at 0.6 and for the NCEP 
Reanalysis model at 0.3 (19). None of the 
models show significant correlations with the 
observed SW flux anomalies. 

The seasonal model anomalies for 1993 
through 1997 are shown for comparison in Fig. 
3, averaged consistently with the observations. 
The models miss the semi-annual cycle in the 
SW flux anomalies after 1993, i.e., they are 
missing the observed seasonal cycle change in 
tropical albedo shown in Fig. 3. 

We conclude that the large decadal variabil- 
ity of the LW and SW radiative fluxes shown in 
Figs. 1 through 3 appear to be caused by chang- 
es in both the annual average and seasonal trop- 
ical cloudiness. In general, these changes are not 
well predicted by current climate models, or by 
the NCEP Reanalysis. Indeed, current assess- 
ments (1) of global climate change have found 
clouds to be one of the weakest components in 
climate models. This leads to a threefold uncer- 
tainty in the predictions of the possible global 
warming over the next century. Though the 
models represent reasonably well the large re- 
gional shifts of convective cloudiness during an 
El Nifno event, the current results indicate that 
the models are struggling to produce the more 
subtle, but still large, decadal changes seen in 
the radiation data. Three potential reasons for 
the disagreement are as follows: (i) The ob- 
served cloud and radiation changes are forced 
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by SST changes, but the clouds in the models do 
not respond correctly to the forcing. Note that 
the SST forcing includes both global change as 
well as natural decadal variability such as the 
Arctic Oscillation and the Pacific Decadal Os- 
cillation. (ii) The radiation budget and cloud 
fluctuations are forced by changes in the climate 
system other than SST. (iii) The radiation bud- 
get and cloud fluctuations are an unforced nat- 
ural variability. 

Independent evidence for decadal tropical 

Fig. 3. Satellite record 
of the tropical mean 
(20?S to 20?N lati- 
tude) seasonal cycle 
of LW thermal emit- 
ted flux anomaly (top 
panel), SW flux anom- 
aly (middle panel), 
and SW albedo anom- 
aly (lower panel). Al- 
bedo is the fraction of 
solar radiation inci- 
dent on Earth that is 
reflected back to 
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However, we caution against interpreting the 
decadal variability as evidence of greenhouse 
gas warming. Whether the changes seen in the 
radiative balance in the last two decades are the 
result of natural variability or are a response to 
global change remains to be determined. A ma- 
jor step in understanding these changes is given 
in a companion paper in this issue (21), which 
offers a hypothesis for the link between these 
radiative balance changes and corresponding 
changes in the dynamical climate system, a sys- 
tem that appears to be much more variable than 
previously thought. 
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Distinguishing Inchworm and 

Hand-Over-Hand Processive 

Kinesin Movement by Neck 

Rotation Measurements 

Wei Hua,1 Johnson Chung,2 Jeff Gellesl2* 

The motor enzyme kinesin makes hundreds of unidirectional 8-nanometer steps 
without detaching from or freely sliding along the microtubule on which it moves. 
We investigated the kinesin stepping mechanism by immobilizing a Drosophila 
kinesin derivative through the carboxyl-terminal end of the neck coiled-coil domain 
and measuring orientations of microtubules moved by single enzyme molecules at 
submicromolar adenosine triphosphate concentrations. The kinesin-mediated mi- 
crotubule-surface linkage was sufficiently torsionally stiff (-2.0 ? 0.9 x 10-20 
Newton meters per radian2) that stepping by the hypothesized symmetric hand- 
over-hand mechanism would produce 180? rotations of the microtubule relative 
to the immobilized kinesin neck. In fact, there were no rotations, a finding that is 
inconsistent with symmetric hand-over-hand movement. An alternative "inch- 
worm" mechanism is consistent with our experimental results. 
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The motor enzyme kinesin moves membrane- 
bound organelles along microtubules in eukary- 
otic cells (1). Microtubule-based movements of 
organelles in vivo may be driven by as few as 
one motor enzyme molecule (2). Observations 
of the movement of single kinesin molecules in 
vitro demonstrate that the enzyme is well adapt- 
ed to functioning as an isolated single molecule 
in living cells. First, the enzyme is processive: 
The kinesin undergoes multiple catalytic turn- 
overs without detaching from the microtubule 

'Biophysics and Structural Biology Program, 2Bio- 
chemistry Department, Brandeis University, 
Waltham, MA 02454-9110, USA. 

*To whom correspondence should be addressed. E- 
mail: gelles@brandeis.edu 

The motor enzyme kinesin moves membrane- 
bound organelles along microtubules in eukary- 
otic cells (1). Microtubule-based movements of 
organelles in vivo may be driven by as few as 
one motor enzyme molecule (2). Observations 
of the movement of single kinesin molecules in 
vitro demonstrate that the enzyme is well adapt- 
ed to functioning as an isolated single molecule 
in living cells. First, the enzyme is processive: 
The kinesin undergoes multiple catalytic turn- 
overs without detaching from the microtubule 

'Biophysics and Structural Biology Program, 2Bio- 
chemistry Department, Brandeis University, 
Waltham, MA 02454-9110, USA. 

*To whom correspondence should be addressed. E- 
mail: gelles@brandeis.edu 

(3, 4), facilitating efficient organelle transport 
over long distances (5). Second, the duty ratio 
of kinesin is high: The enzyme cannot freely 
slide in the direction of the microtubule axis 
during most or all of its enzymatic cycle (6. 7) 
and thus is able to move forward even when 
opposed by the substantial elastic forces im- 
posed by mechanical obstructions to organelle 
movements inside cells. 

The mechanism by which single kinesin 
molecules achieve processive, high-duty-ra- 
tio movement is not well understood. Both of 
the enzyme's two identical head domains are 
required for such movement: the kinesin one- 
headed homolog KIF1A is processive but has 
low duty ratio (8-10), and truncated kinesin 
constructs with only one head have low duty 
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