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its width (32). On physical grounds, the thin gas 
gap suggested by our measurements should also 
be expected to possess soft modes with fluctu- 
ations whose wavelength ranges from small to 
large. From this perspective, we then expect 
that the experimental geometry of a Janus-type 
water film, selected for experimental conve- 
nience, was incidental to the main physical 
effect. 

These conclusions have evident connec- 
tions to understanding the long-standing 
question of the structure of aqueous films 
near a hydrophobic surface and may have a 
bearing on understanding the structure of 
water films near the patchy hydrophilic- 
hydrophobic surfaces that are so ubiquitous 
in nature. 

Note added in proof We have recently 
been made aware of neutron reflectivity ex- 
periments that indicate the existence of a 
nanometer-thick vapor-like coating that 
forms on an extended hydrophobic surface 
when it is immersed in water (33, 34). 
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The high alpha-diversity of tropical forests has been amply documented, but 
beta-diversity- how species composition changes with distance- has seldom 
been studied. We present quantitative estimates of beta-diversity for tropical 
trees by comparing species composition of plots in lowland terra firme forest 
in Panama, Ecuador, and Peru. We compare observations with predictions 
derived from a neutral model in which habitat is uniform and only dispersal and 
speciation influence species turnover. We find that beta-diversity is higher in 
Panama than in western Amazonia and that patterns in both areas are incon- 
sistent with the neutral model. In Panama, habitat variation appears to increase 
species turnover relative to Amazonia, where unexpectedly low turnover over 
great distances suggests that population densities of some species are bounded 
by as yet unidentified processes. At intermediate scales in both regions, ob- 
servations can be matched by theory, suggesting that dispersal limitation, with 
speciation, influences species turnover. 

Beta-diversity is central to concepts about 
what controls diversity in ecological commu- 
nities. Species turnover can reflect determin- 
istic processes, such as species' adaptations 
to differences in climate or substrate, or it can 
result from limited dispersal coupled with 
speciation, delayed response to climatic 
change, or other historical effects. Perhaps 
more important, beta-diversity is as important 
as alpha-diversity for conservation, because 
species turnover influences diversity at large 
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scales. Recently, Hubbell (1) and Harte et al. 
(2, 3) have derived theories relating species 
turnover with distance to species-area rela- 
tions and total species richness. In very rich 
forests of the neotropics, these theories may 
allow us to interpolate species turnover and 
estimate species distributions and diversity at 
scales relevant to conservation even with the 
sparse data from forest plots that are currently 
available. 

To measure beta-diversity and test factors 
influencing it, we identified all trees in 34 
plots near the Panama Canal, 16 plots in 
Ecuador's Yasuni National Park, and 14 plots 
in Peru's Manu Biosphere Reserve (4-7). All 
plots were in terra firme, or unflooded, for- 
ests. Over 50,000 trees >10-cm stem diam- 
eter were tagged, measured, and sorted to 
morphospecies. The similarity between two 
plots was measured three different ways: S0- 
rensen's and Jaccard's measures of the frac- 
tion of species shared and the probability F 
that two trees chosen randomly, one from 
each plot, are the same species (8). The S0- 
rensen and Jaccard indices weight all species 
equally; F is influenced primarily by com- 
mon species. We used the overall decay of 
similarity in species composition with dis- 
tance as a measure of beta-diversity (9). 
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In all three regions, the similarity between 
two 1-ha forest plots declined with increasing 
distance between them (Fig. 1). Adjacent 
hectares shared 70% of their species in Pan- 
ama and 55% in Amazonia (10). No pair of 
hectares separated by over 2 km shared this 
high a fraction. Similarity declined rapidly 
with distances up to 3 to 5 km in all three 
regions. In Panama, this rapid decline persist- 
ed to 50 km, at which distance two plots 
typically shared only 1 to 15% of their spe- 
cies (Fig. 1). In South America, however, 
similarity hardly changed from 5 to 100 km, 
with plots at those distances consistently 
sharing 30 to 40% of their species (Fig. 1). 

Panamanian plots shared few species with 
plots in Amazonia (averaging 8% with single 
plots in Peru and 5% with Ecuador). Ecua- 
dorian and Peruvian hectares 1400 km apart 
shared, on average, 20% of their species- 
more than hectares only 50 km apart in Pan- 
ama. How do these measures of beta-diversi- 
ty compare with other forests? Over 9000 km 
of lowland boreal spruce forest (11), the nat- 
ural logarithm of the Jaccard index between 
plots declined by 0.19 per 1000 km of dis- 
tance. Between Peru and Ecuador, the same 
decline was 0.55 per 1000 km, whereas from 
Panama to Ecuador, it was 1.85. In these 
tropical regions, species turnover is higher 
than in boreal forest. 

We presume that varied climate and geol- 
ogy accelerate species turnover in Panama. 
Annual rainfall is <2000 mm near the Pacific 
and >3000 mm near the Caribbean, and 
many different geological formations under- 
lie the plots (4). Habitat type influences spe- 
cies distribution: For example, tree species 
common in dry areas reappear on rapidly 
draining soils in wet areas (4). In contrast, the 
plots in Peru and Ecuador have relatively 
similar soils (12), and climate varies little 
within either region. Unlike Panama, species 
turnover in western Amazonia should reflect 
mainly dispersal limitation: Seeds seldom 
travel far (13), so distant sites are less likely 
to share species. 

To assess the influence of limited dispers- 
al on beta-diversity, we consider a model for 
how similarity should change with distance in 
a community where only dispersal and spe- 
ciation affect species distributions. This the- 
ory provides a null hypothesis by which we 
can measure the impact of influences that the 
model ignores; without it, we were unable to 
assess the role dispersal limitation might play 
in beta-diversity. To generate quantitative 
predictions, the model makes the simplify- 
ing assumptions of Hubbell's neutral theo- 
ry (I)-all species are identical, trees ma- 
ture instantly, and new species arise from 
single individuals. Despite these simplifi- 
cations, a dispersal model of beta-diversity 
is warranted, given the ample discussion on 
how dispersal affects forest communities at 

both local and continental scales (13). 
To derive the theory, we borrow popu- 

lation genetic methods for analyzing how 
allelic similarity changes with distance (14, 
15). With these methods, we calculate the 
probability F(r) that two randomly selected 
trees r km apart are conspecific. Let all 
trees in the forest have the same prospects 
of death, reproduction, and dispersal. When 
a tree dies, let a seed-parent chosen at 
random from the dead tree's neighbors pro- 
vide an instantly maturing replacement. Let 
this replacement have probability v of be- 
ing an entirely new species. Define the 
dispersal function P(r) as the probability 
that a tree at a particular location r km 
away is the parent of the replacement and 
let P(r) be a radially symmetric Gaussian 
density, centered on the replacement. As- 
sume that speciation is in complete balance 
with extinction, so that F(r) does not 
change with time (a balance that may take 
2/v generations to attain). Then the proba- 
bility F(r) that two trees r km apart are 
conspecific is 

2pUrU2 + In 

when r > u, and 

F(r) { 2p 2 '; I | (2) 

when r < (T. Ko is the modified Bessel func- 
fion, 2(u2 is the mean square dispersal dis- 
tance from parent to surviving offspring, p is 
tree density, and v is speciation rate. For large 
r, Eq. 1 also holds at least approximately for 
any dispersal kernel with a finite third mo- 
ment. Analogous approximations can be de- 
rived for the "fat-tailed" Cauchy kernel (16). 
These derivations are sketched in the supple- 
mental material (7). 

The theory suggests that similarity decays 
monotonically with distance and that, over a 
wide range of distances, the decline is linear 
with log-distance. This aspect of the theory 
resembles data from Panama and Western 
Amazonia. In addition, values for the dispersal 
parameter close to those measured in the 50-ha 
plot in Panama-a mean of 39 m for 65 species 
(17)-produce theoretical similarity curves re- 
sembling those observed (Fig. 2). For example, 
with u = 55 m in Ecuador, the theoretical curve 
matches data from r = 0.2 km to r = 50 km 
(Fig. 2). Higher beta-diversity in Panama can be 
fit with a lower dispersal parameter (u = 40 m; 
Fig. 2). 

Closer comparison of the observed and 
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Fig. 1. S0rensen similarity index between pairs of 1-ha plots as a function of distance between the 
plots. Only the four corner hectares of the BCI 50-ha plot were used to avoid undue influence of 
the single site. In Ecuador, the 25-ha plot was not included here, because species names have not 
yet been matched with the single hectares. Solid lines connect average values in various distance 
categories: red for Ecuador, black for Peru, and blue for Panama. Individual points for Peru were 
omitted to reduce clutter. 
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predicted beta-diversity suggests, however, 
that habitat variation is the cause of at least 
some species turnover in Panama. Variance 
in similarity at a given distance is three times 
higher in Panama than in Amazonia (18), but 
according to the theory, variance can be due 
only to sampling error, which should be iden- 
tical in both regions. Furthermore, there are 
instances where Panamanian plots on distinct 
substrate differ more in vegetation than plots 
on the same substrate (4, 19). Is species 
turnover steepened by habitat variation in 
Panama but governed chiefly by dispersal 
limitation in western Amazonia? 

It seems not. Even in Amazonia, dispersal 
theory alone is insufficient: It cannot simulta- 
neously accommodate the very steep decay in 
similarity observed in Ecuador from 0 to 100 m, 
the more gradual decline seen at both sites in 
Amazonia between 0.5 and 50 kn, and the very 
slight decline between 50 kn and 1400 km 
(Fig. 2; the steep decline within 100 m was also 
observed in Panama). The dispersal parameter 
u must be set to 16 m to fit the data from 0 to 

100 m in the 25-ha plot in Ecuador, 55 m to fit 
the data from 0.2 to 50 km in Ecuador, and 
81 m to fit the similarity between Ecuador and 
Peru. This suggests that different factors influ- 
ence beta-diversity at different scales. 

The rapid decline of similarity at short 
distance suggests that species are more ag- 
gregated than dispersal theory predicts. This 
may reflect old light gaps that only a few 
species happened to colonize or high varia- 
tion in adult reproductive output; both can 
produce dense aggregations of conspecifics 
(20). The high similarity between Ecuador 
and Peru arises because many tree species are 
common at both sites (6), suggesting a factor 
favoring similarity that partially overrides 
dispersal limitation (21). For example, the 
palm Iriartea deltoidea is the most common 
species in most plots in Ecuador and Peru (6), 
as well as at one wet site in Panama. Our 
dispersal theory cannot account for such an 
abundant, widespread species. High similari- 
ty over long distances could reflect equili- 
brating processes that control density of spe- 

cies over wide areas, such as differences in 
life history or pest resistance. Once a species 
reaches a site, its population tends toward a 
"preferred" density, overcoming the influ- 
ence of dispersal limitation. 

We have shown striking differences in 
beta-diversity in forests of Central Panama 
versus western Amazonia and have argued 
that the patterns cannot be explained by lim- 
ited dispersal and speciation alone. Although 
our null model fits species turnover for plots 
separated by 0.2 to 50 km, discrepancies at 
other scales suggest that additional factors 
must be important. The role of habitat heter- 
ogeneity at local scales and the impact of 
widespread species would not have been ev- 
ident without a quantitative null model for 
beta-diversity. A full understanding of turn- 
over in tree species composition at all scales 
will require reckoning not only with specia- 
tion and limited dispersal but with habitat 
structure and species differences. 
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Role of the Myosin Assembly 
Protein UNC-45 as a Motecutar 

Chaperone for Myosin 
Jose M. BarraL,2*t Alex H. HutagaLung,l* Achim Brinker.3 

F. Ulrich Hartl,3 Henry F. Epstein'-2' 

The organization of myosin into motile cellular structures requires precise 
temporal and spatial regulation. Proteins containing a UCS (UNC-45/CRO1/ 
She4p) domain are necessary for the incorporation of myosin into the con- 
tractile ring during cytokinesis and into thick filaments during muscle devel- 
opment. We report that the carboxyl-terminal regions of UNC-45 bound and 
exerted chaperone activity on the myosin head. The amino-terminal tetratri- 
copeptide repeat domain of UNC-45 bound the molecular chaperone Hsp9O. 
Thus, UNC-45 functions both as a molecular chaperone and as an Hsp9O 
co-chaperone for myosin, which can explain previous findings of altered as- 
sembly and decreased accumulation of myosin in UNC-45 mutants of Caeno- 
rhabditis elegans. 

The motor protein myosin assembles into 
molecular machines essential for processes 
such as cell division, cell motility, and mus- 
cle contraction through a multistep pathway 
requiring additional proteins (1). UCS pro- 
teins (Caenorhabditis elegans UNC-45, Po- 
dospora anserina CRO1, Saccharomyces 
cerevisiae She4p, and Schizosaccharomyces 
pombe Rng3p) are involved in myosin func- 
tion and contain homologous COOH-termi- 
nal domains (2-6). Unc-45 and RNG3 are 
essential genes whose loss-of-function alleles 
implicate their gene products in myosin as- 
sembly in vivo; substitutions of conserved 
residues within or near their UCS domains 
cause defective assemblies of thick filaments 
during muscle development and of the con- 
tractile ring during cell division (Fig. IA). 
UNC-45 and Rng3p interact functionally and 
specifically in vivo with muscle and cytoskel- 
etal myosins, respectively (2, 6, 7). UNC-45 
also contains an NH2-terminal domain com- 
posed of three tetratricopeptide repeat (TPR) 
motifs and a newly discovered central region. 
This three-domain configuration is main- 
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tained in all UNC-45 animal homologs iden- 
tified, including those of Drosophila, Xeno- 
pus, zebrafish, mouse, and human (8). 

TPR motifs are protein-protein interaction 
modules of 34 amino acids, often found in 
tandem repeats of 3 to 16 in a diverse set of 
proteins (9). The UNC-45 TPR domain resem- 
bles that of Hop (Hsp7O/Hsp9O-organizing 
protein) and of protein phosphatase 5 (2, 10, 
11), which bind conserved COOH-terminal 
sites in the molecular chaperones Hsp7O and/or 
Hsp90 (12, 13). Full-length UNC-45 and a 
TPR-deleted construct [TPR(-)] (11) were used 
to pull down endogenous Hsp7O and Hsp9O 
from Sf9 insect cell lysates. In our study, only 
full-length UNC-45 complexed with Hsp9O 
(Fig. iB), indicating that this interaction re- 
quired the TPR domain (11). Both constructs 
pulled down Hsp7O, suggesting a possible 
Hsp7O binding site outside the TPR domain or 
chaperone-client interactions between these 
proteins. In the presence of only purified pro- 
teins, full-length UNC-45, but not TPR(-), was 
able to pull down recombinant C. elegans 
Hsp9O (Hsp9O) (Fig. IC) (11), indicating a 
direct interaction between the UNC-45 TPR 
domain and Hsp9O. To determine whether the 
TPR domain preferentially interacts with 
Hsp9O or Hsp7O, the binding of the recombi- 
nant UNC-45 TPR domain (TPR) (11) to im- 
mobilized Hsp9O (11) was competed by C. 
elegans Hsp7O or Hsp9O 12-oligomer COOH- 
terminal peptides (Fig. ID) (11). The structure 
of the MIEEVD (14) Hsp9O COOH-terminal 
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