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ual 8 80 record, which has substage 6e 
-22% below peak last-interglacial values. 

The Milankovitch theory in its simplest 
form cannot explain Termination II, as it does 
Termination I (30). However, it is still plausible 
that insolation forcing played a role in the tim- 
ing of Termination II. As deglaciations must 
begin while Earth is in a glacial state, it is useful 
to look at factors that could trigger deglaciation 
during a glacial maximum. These include (i) 
sea ice cutting off a moisture source for the ice 
sheets (31); (ii) isostatic depression of continen- 
tal crust (32); and (iii) high Southern Hemi- 
sphere summer insolation (2) through effects on 
the atmospheric CO2 concentration (33, 34). If 
ice sheets remained large during much of stage 
6, the isostatic depression of the crust could 
have lowered the elevation of the ice sheets 
enough for a significant proportion of the ice 
sheets to have been below the equilibrium line 
by 145 ka, causing collapse and melting. Com- 
bined with the moisture-starving effects of ex- 
tensive sea ice and the warming effects of rising 
CO2 concentrations, isostatic effects could ex- 
plain the early deglaciation. Further, Johnson 
(35) found a minimum in the gradient between 
high- and low-latitude insolation in the North- 
ern Hemisphere at 140 ka, which would also 
decrease the moisture source for the ice sheets. 
Such a scenario would agree with models sug- 
gesting that isostatic adjustments associated 
with large ice sheets are a significant factor in 
creating the 100,000-year cycle (32), which is 
largely defined by glacial terminations. 

Because there is no single clear driving 
mechanism for an early sea level rise during 
Termination II, it poses a challenge to the Mi- 
lankovitch theory. The timing and cause of 
Termination II are particularly important be- 
cause it is so closely linked to the 100,000-year 
cycle, of which the driving mechanism remains 
unclear and widely debated (36). With the tim- 
ing of only two glacial terminations known 
precisely enough to test Milankovitch theory 
predictions, it is difficult to identify which ter- 
mination is the anomaly. Corals and speleothem 
data from earlier terminations may help resolve 
the problem. 
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Iron-Silicon Alloy in Earth's 

Core? 

Jung-Fu Lin,'* Dion L. Heinz,12 Andrew J. Campbell,' 
James M. Devine,' Guoyin Shen3 

We have investigated the phase relations in the iron-rich portion of the 
iron-silicon (Fe-Si) alloys at high pressures and temperatures. Our study 
indicates that Si alloyed with Fe can stabilize the body-centered cubic (bcc) 
phase up to at least 84 gigapascals (compared to -10 gigapascals for pure 
Fe) and 2400 kelvin. Earth's inner core may be composed of hexagonal 
close-packed (hcp) Fe with up to 4 weight percent Si, but it is also con- 
ceivable that the inner core could be a mixture of a Si-rich bcc phase and 
a Si-poor hcp phase. 
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Iron is the most abundant element in 
Earth's core. However, the density of the 
outer core is about 10% lower than the 
density of Fe at the pressure and tempera- 
ture conditions of the outer core, indicating 
the presence of a low atomic weight com- 
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ponent (such as H, C, O, Si, or S) in the 
core (1). There is also evidence that the 
inner core may be less dense than pure Fe, 
and the proportion of light elements in the 
inner core may be as much as 3 weight % 
(2-4). The cosmochemical abundance of 
silicon and measured thermoelastic proper- 
ties of non-silicon alloys indicate that sili- 
con may be an important alloying element 
in the outer core (5, 6), but it was excluded 
as the primary alloying element in the outer 
core on the basis of the equation of state 
(EOS) of the intermediate compound 
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Fig. 1. Phases observed in 
LHDAC experiments with 
the starting materials of 
Fe(7.9 weight % Si) (8). 
The slope of the phase 
transformation from hcp 
to bcc + hcp decreases 
with increasing pressure. 
Mixed phases are com- 
monly observed in the 
heating process, indicat- 
ing broad regions of two 
phase equilibria between 
bcc + hcp and bcc + fcc 
phases. The coexistence 
of the bcc + hcp + fcc 
phases may be due to the 
thermal gradient, temper- 
ature fluctuation, or slight 
misalignment of the laser 
beam with respect to the 
x-ray beam in the LHDAC. 
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Fig. 2. Backscattered electron image of the i 
quenched LHDAC sample from 31 GPa and 
1976 K. The laser beam was -20 !,m in 'i;:i 

diameter. The average Si concentration is I 
11.3 (?0.3) weight % in dark areas (bcc $ 

phase) and is -7.2 (?0.1) weight % in - 

bright areas (fcc phase), whereas the aver- y, 
age Si concentration remains at -8.1 R| 
(+0.2) weight % in the surrounding un- ; 

heated area. 
,'i 

e-FeSi (7). However, studying the Fe-rich 
portion of the Fe-Si system is more appro- 
priate for understanding the possible effect 
of Si on the EOS and the crystal structure 
of Fe under core conditions. The phase 
diagram of Fe has been extensively studied; 
body-centered cubic (bcc) Fe transforms to 
the hexagonal close-packed (hcp) phase un- 
der high pressures, and the bcc phase trans- 
forms to the face-centered cubic (fcc) phase 
under high temperatures (8). In situ x-ray 
diffraction studies to 161 GPa and 3000 K 
demonstrate that hcp-Fe has a wide stabil- 
ity field extending from the deep mantle to 
core conditions (9). We studied the Fe-rich 
portion of the Fe-Si alloys in order to un- 
derstand the possible crystal structures and 
the phase diagram relevant to Earth's core. 

The Fe(7.9 weight % Si) alloy was stud- 
ied in a laser-heated diamond anvil cell 
(LHDAC) at pressures up to 84 GPa and 

A fcc+bcc 
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--------Fe phase diagram 
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temperatures up to 2400 K, and x-ray dif- 
fraction patterns were collected in situ (10, 
11). The bcc phase transformed to the 
bcc + hcp phases at 16 GPa and 300 K, and 
the phase transformation to the hcp phase 
was completed at 36 GPa. When laser- 
heated below 16 GPa, the bcc phase trans- 
formed to a mixture of bcc + fcc phases. 
The hcp phase transformed to bcc + hcp 
phases under high temperatures and, upon 
further heating, bcc + hcp phases trans- 
formed to bcc + fcc phases (Fig. 1). Upon 
pressure quench, the sample reverted to the 
bcc phase. The quenched samples from a 
LHDAC were then analyzed with a scan- 
ning electron microprobe (SEM), and the 
results indicate that the starting material 
decomposed into two chemical composi- 
tions at high pressure and temperature 
(high P-T); the bcc phase was presumably 
enriched in Si, and the coexisting hcp or fcc 
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Fig. 3. Schematic T-X phase diagram (gray 
dashed lines) of iron-rich Fe-Si alloys at -16 
(?2) GPa. Crosses, bcc + hcp; 0, hcp only; C, 
fcc + hcp; x, fcc only; *, bcc + fcc + hcp; A, 
bcc + fcc. Tie lines indicate coexisting com- 
positions in quenched samples that were an- 
alyzed by SEM. The experiments for Fe(4.0 
weight % Si) and Fe(7.9 weight % Si) in a LVP 
were conducted at -18 GPa and 14 GPa, 
respectively. For Fe(7.9 weight % Si) alloy, 
LHDAC experiments at 1387 K and 1501 K 
help to establish the trend of the bcc + fcc 
phase region. 

phase was depleted in Si relative to the 
starting composition (Fig. 2). The partition- 
ing of Si between bcc and hcp phases or 
between bcc and fcc phases indicates the 
presence of two-phase equilibria under 
high P-T conditions. In comparison with 
the phase diagram of pure Fe (8), it is 
evident that the stability field of the bcc 
phase can be extended to higher P-T con- 
ditions with the addition of Si (Fig. 1). An 
Fe(2.2 weight % Si) alloy was also studied 
in a LHDAC. This lower amount of alloy- 
ing Si did not have a strong effect on the 
phase diagram of Fe; hcp-Fe(2.2 weight % 
Si) transformed entirely to the fcc phase 
while laser-heated at -34 GPa to 1400 K. 

To better understand the temperature- 
composition (T-X) phase diagram of Fe-Si 
alloys at high pressure, we also conducted 
in situ x-ray experiments, along with chem- 
ical analyses of the quenched samples, on 
Fe(4.0 weight % Si) and Fe(7.9 weight % 
Si) in a large-volume press (LVP) and a 
LHDAC (12) at --16 GPa (Fig. 3) (10). 
Three regions of the two-phase equilibria 
are observed: bcc + hcp, bcc + fcc, and 
hcp + fcc. As shown, adding Si into Fe can 
change the phase diagram of Fe; the hcp to 
fcc phase transformation at lower Si con- 
tents becomes a more complicated phase 
transition sequence at higher Si contents 
(Fig. 3). The maximum solubility of Si in 
the fcc phase at zero pressure is only 1.9 
weight % (13), but the effect of pressure 
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Table 1. Chemical analyses of the quenched Fe-Si samples. The starting material in each case was Fe(7.9 
weight % Si). The measured Si contents were averaged from at least three analyses. Numbers in 
parentheses are SDs. These results indicate the width of the bcc + fcc or the bcc + hcp phases at the 
specific P-T conditions. 

P bcc fcc hcp Remarks 
(GPa) (Kweight %) ( Si weight %) ( Si weight %) 

Remarks 

T0250 9.4 1200(10) 11.44(0.13) 5.32 (0.09) LVP; x-ray 
T0258 14.1 1100(10) 10.30 (0.08) 6.71 (0.07) LVP; x-ray 
Fe9Si#17 14.2 1501 (105) 9.42 (0.11) 5.93 (0.09) LHDAC* 
Fe9Si#18 13.9 1387 (38) 9.82 (0.12) 5.91 (0.09) LHDAC* 
Fe9Si#11 30.6 1976 (69) 11.33 (0.22) 7.19 (0.18) LHDAC; x-ray 
Fe9Si#15 42.2 1804 (17) 10.92 (0.12) 7.69 (0.10) LHDAC* 

*Fig. 1 was used for the phase identification for experiments that were conducted without x-ray. 

increases the solubility of Si in the fcc 
phase to >6 weight % at 16 GPa (14) 
(Table 1). 

Sulfur and oxygen are also considered to 
be two possible light elements in the core, 
and the properties of FeS and FeO under 
high P-T conditions have been frequently 
used to discuss the possibility of sulfur and 
oxygen in the core (3). Although the solu- 
bility of oxygen in Fe is low at ambient 
pressure, high-pressure experiments on the 
Fe-FeO system have shown that oxygen is 
soluble in Fe at high P-T conditions (15). 
The phase of FeS known at the highest P-T 
conditions has the hexagonal NiAs struc- 
ture, which suggests that S may also form a 
solid solution with Fe under core condi- 
tions (16). As demonstrated in the Fe-Si 
alloy experiments reported here, a small 
alloying component can have a large effect 
on the phase diagram. Because the physical 
properties of the liquid often mimic the 
properties of the corresponding solids, it is 
likewise possible that adding a small alloy- 
ing component to liquid Fe may also have a 
substantial effect on the liquid structure of 
Fe (17). 

Our results show that a light element 
alloyed with iron can change the topology 
of the subsolidus phase diagram of iron 
under high P-T conditions. Adding Si into 
Fe stabilizes the bcc phase to much higher 
P-T conditions. However, only 2 to 4 
weight % Si is not enough to change the 
phase diagram of Fe (Fig. 3). Therefore, if 
the inner core only contains 2 to 4 weight % 
Si, then it is likely to have the hcp struc- 
ture. It is also conceivable that the inner 
core could be a mixture of a Si-rich bcc 
phase and a Si-poor hcp phase. The exis- 
tence of two phases with different compo- 
sitions may influence the interpretation of 
the observed seismic anisotropy of the in- 
ner core (18, 19). 
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