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suit constitutes a chal- E ' 
lenge for different models -20 
of galaxy evolution (8). > 

The exploration of dis- -8 
tant galaxies requires accu- .c 
rate and well-defined pro- E -16 
jects. In the past, many -i 
surveys were concerned 
with mapping the whole 1.5 
sky. In contrast, the sur- l! 
veys of the future will have 
to concentrate on well-defined areas at 
maximum resolution and with a range of in- 
struments. In this spirit, the Great Observa- 
tories Origins Deep Survey (GOODS) aims 
to survey a small area of the sky with sever- 
al major astronomical facilities (including 
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Galaxies near and far. 
The slope of the Tully- 
Fisher relation for 1200 
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is steeper than that for 
60 spiral or irregular 
galaxies at intermediate 
redshift (green). The re- 
sult provides insights into 
how galaxies of different 
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Space Telescope, and the ESO VLT tele- 
scope), covering the entire range of wave- 
lengths at our disposal (9). The total area to 
be surveyed is only 300 square arc min- 
similar to that subtended by the full Moon 

Galaxies near and far. 
The slope of the Tully- 
Fisher relation for 1200 
local spiral galaxies (pink) 
is steeper than that for 
60 spiral or irregular 
galaxies at intermediate 
redshift (green). The re- 
sult provides insights into 
how galaxies of different 

2.0 2.5 mass and luminosity may 
vmax (km/s) have evolved over time. 

the Chandra X-ray Telescope, the Hubble 
Space Telescope, and the ESO VLT tele- 
scope), covering the entire range of wave- 
lengths at our disposal (9). The total area to 
be surveyed is only 300 square arc min- 
similar to that subtended by the full Moon 

but large enough to give us an idea of what 
happened at the beginning of the universe. 
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W ith the human genome sequence 
as an intellectual inspiration and 
practical scaffold, scientists are 

ready to perform experiments on all genes. 
Integrating the resulting genomewide infor- 
mation into useful definitions of protein 

function is a huge 
Enhanced online at challenge. Exactly 
www.sciencemag.org/cgi/ what form such func- 
content/full/295/5553/284 tional definitions will 

take is still debatable, 
but comprehensive networks of protein-pro- 
tein interactions, or interactomes, should 
prove valuable in helping to shape them. 

On page 321 of this issue, Tong et al. (1, 
2) describe a systematic approach for iden- 
tifying protein-protein interaction networks 
in which different peptide recognition do- 
mains participate. They break new ground 
in the way they combine "orthogonal" (that 
is, fundamentally different) sets of genomic 
information. Specifically, they study the in- 
tersection of two different interactomes. 
The first is derived from screening phage- 
display peptide libraries to find consensus 
sequences in yeast proteins that bind to par- 
ticular peptide recognition domains. The re- 
sulting network connects -proteins with 
recognition domains to those containing the 
consensus. This network partially defines 
binding sites in some of the proteins and 
represents a clever use of phage display 
technology. The second network is derived 
from experimentally testing each peptide 
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Overlapping nets. Two different extremes in int 
ing interactomes. The combined network on the 
the union of those interactomes with low false-pc 
but high false-negative rates, whereas the com 
network on the right is the intersection of interacl 
with low false-negative but high false-positive 
Circles represent proteins; links, interactions; and c 
lines, known associations. Thicker links indicate 
false-positive rates. More effective rules for coml 
networks than union and intersection take into ac 
the different error rates associated with each link 1 

recognition module, using the yeast two-hy- 
brid technique, for association with possi- 
ble protein-binding partners. Tong et al. ap- 
ply their approach to determine interacting 
partners for SH3 domains in yeast proteins. 
These domains make good targets because 
of their prevalence and involvement in a 
number of important biological processes, 
from cytoskeleton reorganization to signal 
transduction. 

The power of Tong et al.'s strategy, par- 
ticularly for reducing noise, becomes mani- 
fest when interpreting large genomic data 
sets. One fallacy in dealing with genomic 
data sets is ascribing too much meaning to 
individual data points. Many data sets (for 
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partners for SH3 domains in yeast proteins. 
These domains make good targets because 
of their prevalence and involvement in a 
number of important biological processes, 
from cytoskeleton reorganization to signal 
transduction. 

The power of Tong et al.'s strategy, par- 
ticularly for reducing noise, becomes mani- 
fest when interpreting large genomic data 
sets. One fallacy in dealing with genomic 
data sets is ascribing too much meaning to 
individual data points. Many data sets (for 

example, gene expression profiles) contain 
so much noise that it can be difficult to draw 
reliable conclusions for specific genes. 
These data sets still offer much useful infor- 
mation statistically, in terms of broad trends, 

but they are useful only insofar as 
the data can be aggregated. This can 

"\ be simply achieved by combining 
s9) replicates of an experiment, but 

4/s\ such a process does not remove sys- 
tematic errors. It is also possible to 
collect many individual measure- 

\ ments on different proteins into ag- 
) / gregate "proteomic classes," for ex- 

ample, functional categories, and to 
compare these (3-6). 

The new work points to perhaps 
left a. the most powerful approach: inter- 
>sitive relating and integrating orthogonal 
bined information. In the abstract, it is 
tomes easy to demonstrate that combining 
rates. independent data sets results in a 
lotted lower error rate overall. For in- 
lower stance, combining three indepen- 
bining dent binary-type data sets with error 
:count rates of 10% reduces the overall er- 
:ype. ror rate to 2.8% (for both false posi- 

tives and negatives) (7). Moreover, 
interrelating two different types of whole- 
genome data also enables one to discover 
potentially important but not obvious rela- 
tionships-for example, between gene ex- 
pression and the position of genes on chro- 
mosomes, or between gene expression and 
the subcellular localization of proteins (8, 
9). 

There have been a number of previous 
attempts to interrelate information from dif- | 
ferent genomic data sets. For instance, gene ,, 
expression profiles were initially analyzed | 
by a variety of supervised and unsupervised E 
methods-hierarchical trees, k-means, self- o 
organizing maps, and support-vector ma- a 
chines-and compared with protein func- s 
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tion categories (10-14). Gene expression 
data were also compared with data sets de- 
scribing transcription factor binding sites, 
protein families, protein-protein interac- 
tions, and protein abundance (3-6, 15-20). 
In a shorthand sense, much of this can be 
thought of as interrelating the transcriptome 
(population of mRNA transcripts) with oth- 
er "omes" such as the proteome, trans- 
latome, secretome, and interactome (3). 

There are considerably fewer examples 
of the synthesis of more than two types of 
genomic information. One initial attempt 
combined gene expression correlations, 
phylogenetic profiles, and patterns of do- 
main fusion to predict protein function (21, 
22). Bayesian statistics were used to inte- 
grate gene expression, "essentiality" (the 
degree to which a gene is essential for sur- 
vival), and sequence motif data into a uni- 
form framework for the prediction of pro- 
tein subcellular localization (20). Tong et 
al.'s strategy of overlapping interactomes 
presents a new type of synthesis. It is par- 
ticularly effective in that their two data sets 
are orthogonal in many respects. Phage 
display is based on in vitro binding of short 
peptides, whereas the two-hybrid approach 
assays in vivo binding between full-length 
proteins. Moreover, the phage display net- 
work is computationally predicted but uses 
relatively unambiguous consensus se- 
quences, whereas the two-hybrid network 
is experimentally derived but suffers from 
appreciable false positives (23, 24). 

From a data-mining standpoint, the het- 
erogeneous character and variable quality of 
whole-genome information makes integra- 
tion tricky. Consider combining "orthogo- 
nal" interactome data sets, such as attempt- 
ed by Tong et al., in a general sense. How 
might one proceed formally? There are two 
extremes (see the figure, previous page). At 
one extreme, the data sets have low false- 
negative but high false-positive error rates. 
That is, each experiment almost never miss- 
es real interactions but also finds many spu- 
rious ones. In this situation, the benefit of 
integration comes from intersection: Only 
interactions common to all are accepted, 
thus lowering the combined error rate. Tong 
et al.'s approach fits this to some degree. At 
the other extreme are data sets with few 
false positives but low coverage of the space 
of interactions. The benefit of integration 
then comes from the union: Any interaction 
found in at least one data set is accepted. An 
earlier interactome analysis followed this to 
some degree (25). 

In most practical situations, the optimal 
way to integrate data sets is somewhere be- 
tween these extremes. The task is to com- 
bine data sets with varying error rates and 
coverage. Accordingly, the rules for identi- 
fying positives become more complicated. 

SCIENCE'S COMPASS 

Instead of simple unions or intersections, 
different combinations of positive and neg- 
ative signals from the data sets should be 
considered, taking into account their rela- 
tive false-positive and -negative rates. 

A practical illustration of the power of 
interrelating genomic data for yeast (see 
the figure, this page) shows the degree to 
which one can find protein-protein associ- 
ations in known protein complexes (5, 6, 
26) by stepwise integration of increasing 
amounts of orthogonal genomic informa- 
tion. We start by considering associations 
that can be found from gene expression 

0 

0) 
E 50- 

1a High error 
1 link 

Cel -cyle sn + K nokout +Essentiality +Localization expression 'fexpression 

A net profit from integration. Integrating progres 
more orthogonal information identifies more and 
associations (5-7). From the known complexes in 
there are 8250 protein-protein associations (26). 
axis shows the percentage of these identified b! 
parate genomic data (that is, coverage). The x axis ; 
the progressive addition of genomic data. The firs 
bars represent the protein associations with the 
significant expression correlation in two differen 
croarray sets (27, 28). The next two represent addir 
associations predicted because both proteins were 
larly essential for cell survival ("essentiality") or hac 
ilar subcellular localization (20, 29, 30). The color sh 
on the bars roughly indicates false-positive 
throughout the integration. Although it is reasonabli 
associated components of complexes will have cor 
ed expression and similar localization and "essenti 
this is only weakly predictive, generating many spl 
positives. Consequently, the "weak links" case in the 
hand panel of the previous figure mostly applies, ar 
shading indicates how intersection lowers the error 

correlations over the cell cycle (27); then i 
we incorporate those derived from a sec- 
ond but different microarray experiment, 1 
which provides a series of gene expression i 
changes after specific genes have been , 
knocked out (28). Finally, we add associa- , 
tions predicted from genomic measure- 
ments of essentiality and localization (20, 
26, 29, 30). As we integrate more informa- 
tion, the total number of correctly identi- 
fied interactions rises (especially for the 
union of the predicted associations). Si- 
multaneously, the error rate decreases. 
Moreover, if we focus just on the intersec- 
tion of the predicted associations, the error 
rate falls even more. 

future challenge will be to devise uni- 
frameworks for integrating informa- 
from both high-throughput and tradi- 
biochemical approaches. One aspect 

s will be to develop better databases 
oring and querying heterogeneous in- 
Ition. In particular, databases will need 
more precise in their treatment of er- 
nd also interface better with the infor- 
n in journals. Another aspect will be to 
op data-mining strategies that can op- 
with these databases, integrating many 
ent genomic features into results perti- 
:o biology. Genomic features can be of 

very different character (from hun- 
dreds of "Booleans" for interac- 
tions, to tens of thousands of real- 
number vectors for expression pro- 
files), and a central issue in integra- 
tion is determining how to weight 
each feature relative to the others. 
In this regard, some machine-learn- 
ing techniques, such as Bayesian 
networks and decision trees, are 
quite powerful, whereas others, for 
example, support-vector machines, 
are more problematic. 

Finally, we will need to come 
up with a more systematic defini- 
tion of gene function, the ultimate 
aim of proteomic investigation. To 
many scientists, what constitutes 
"function" is a phrase or name of- 
ten in nonsystematic terminology, 
such as "ATPase" or "suppressor 
of white apricot." Such descrip- 
tions are sufficient for single- 
molecule work but cannot be 
scaled up to the genomic level. 
More systematic attempts have 
been made to place proteins with- 

t in a hierarchy of standard func- 
tional categories or to connect 
them in overlapping networks of 

; varying types of association (26, 
t 31, 32). These networks can obvi- 

ously include protein-protein in- 
teractions, the subject of Tong et 
al.'s work. More broadly, they can 

de pathways, regulatory systems, and 
ling cascades. How far are we able to 
ith this network approach? Perhaps, 
e future, the systematic combination 
tworks may provide for a truly rigor- 
efinition of protein function. 
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Sexually dimorphic organisms employ the 
services of epigenetics-heritable 
changes in gene expression that are inde- 

pendent of DNA sequence-to balance genet- 
ic differences between the two sexes. A superb 
model of this relationship, X-chromosome in- 
activation, has evolved uniquely in mammals 
to ensure equal gene dosage between females, 
who have two X chromosomes, and males, 
who have only one X. This precise pathway 
results in the silencing of the majority of 
genes on one X chromosome early in female 
development. This outcome requires a female 
cell to undergo a highly orchestrated set of 
events when it differentiates. A cell must 
count the X chromosomes, choose one X to 
inactivate (usually in a random manner), initi- 
ate and propagate chromosome-wide silenc- 
ing, and finally maintain this inactive state 
throughout subsequent cell divisions (1). 
Shortly after the discovery of X inactivation 
by Mary Lyon in 1961, geneticists hypothe- 
sized that cis-acting factors (acting on the 
same chromosome) encoded by the X must 
be important in this process. Likewise, trans- 
acting factors (acting on different chromo- 
somes) encoded by chromosomes other than 
the X or Y were presumed to be equally 
important (2). Yet until recently, all 
known regulators of X inactivation were 
cis-acting elements residing on the X 
chromosome. The drought surrounding 
the identification of trans-acting factors 
has now ended. According to Chao et al. 
(3) on page 345 of this issue, the insula- 
tor and transcription regulator CTCF is a 
key trans-acting factor in the X-inactiva- 
tion pathway. 

Early studies on X inactivation 
demonstrated that a region of the X 
chromosome, designated the X-inactivation 
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changes in gene expression that are inde- 

pendent of DNA sequence-to balance genet- 
ic differences between the two sexes. A superb 
model of this relationship, X-chromosome in- 
activation, has evolved uniquely in mammals 
to ensure equal gene dosage between females, 
who have two X chromosomes, and males, 
who have only one X. This precise pathway 
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genes on one X chromosome early in female 
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cell to undergo a highly orchestrated set of 
events when it differentiates. A cell must 
count the X chromosomes, choose one X to 
inactivate (usually in a random manner), initi- 
ate and propagate chromosome-wide silenc- 
ing, and finally maintain this inactive state 
throughout subsequent cell divisions (1). 
Shortly after the discovery of X inactivation 
by Mary Lyon in 1961, geneticists hypothe- 
sized that cis-acting factors (acting on the 
same chromosome) encoded by the X must 
be important in this process. Likewise, trans- 
acting factors (acting on different chromo- 
somes) encoded by chromosomes other than 
the X or Y were presumed to be equally 
important (2). Yet until recently, all 
known regulators of X inactivation were 
cis-acting elements residing on the X 
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the identification of trans-acting factors 
has now ended. According to Chao et al. 
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tor and transcription regulator CTCF is a 
key trans-acting factor in the X-inactiva- 
tion pathway. 
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center (Xic), is required for silencing of ad- 
jacent sequences (4). As a result, a chromo- 
somal fragment containing the Xic can be- 
come inactive, whereas one that does not, by 
default, must remain active. In addition to 
delineating the Xic as the principal cis-act- 
ing silencing center, early experiments un- 
covered a genetic element within the Xic 
that affects X-chromosome choice in the 
mouse (5). Alleles of this element, named 
the X controlling element (Xce), vary in 
strength such that a strong Xce allele is more 
likely to reside on an active X chromosome 
than a weak Xce allele. Surprisingly, Xce has 
escaped molecular identification. 

The major molecular breakthrough for the 
X-inactivation field came with the identifica- 
tion of the Xist gene within the Xic (6). Clues 
to the function of Xist came from its unique 
transcription pattern and cellular localization. 
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Xist, a gene that does not encode a protein, is 
transcribed from the inactive X chromosome 
(Xi) and is silent on the active X chromosome 
(Xa). It codes for a large untranslated RNA 
that coats the Xi. Genetic experiments have 
demonstrated that Xist is required for initia- 
tion and promulgation of silencing, and that it 
is involved in X-chromosome choice (1). 
These findings invoked a compelling molecu- 
lar model of initiation and propagation events, 
with the Xist RNA acting as the major inacti- 
vating element. Despite this progress, molecu- 
lar candidates directing the initial events of 
counting and selection remained elusive. 

Studies of the antisense gene Tsix, the 
most recent addition to the cis-acting family 
of factors within the Xic, have begun to illu- 
minate these early events (7). Tsix overlaps 
with Xist, but is transcribed from the anti- 
sense strand. Like Xist, Tsix codes for an un- 
translated RNA, yet contrary to Xist, Tsix is 
transcribed from the Xa. This pattern sug- 
gests that the two genes are coordinately 
regulated and that Tsix blocks Xist activity. 
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A matter of choice. Before initiation A matter of choice. Before initiation 
of X-chromosome inactivation (left), 
Tsix transcription from both X chromo- 
somes suppresses Xist gene activity, 

preventing X-chromosome silencing. During X-chromosome choice, CTCF may bind to the future 
Xa as a primary event preventing Xist transcription (top right). In this scenario, suppression of Xist 
by CTCF could be achieved by direct activation of its repressor, Tsix, or by blocking access to puta- 
tive enhancers located downstream. Alternatively, a blocking complex may bind to the future Xa as 
a primary event inducing heterochromatic changes within the Xic, including methylation and sup- 
pression of Xist (bottom right). In this scenario, CTCF binds to the future Xi as a secondary event 
and either directly represses Tsix, or blocks Tsix's access to enhancers close to Xist. The enhancers 
have not yet been identified, and their location is speculative. 
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