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Putting Galaxies on the Scale 
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In our expanding universe, radiation emit- 
ted by astronomical objects appears more 
redshifted the farther the objects are from 

us. Galaxies close to our own galaxy have 
low redshift and are relatively old; galaxies at 
high redshift are distant and hence young. 
The advent of the Hubble Space Telescope 
and of large (8 to 10 m) ground-based tele- 
scopes during the last decade has greatly fa- 
cilitated. the study of distant, 
young galaxies. Comparison Gas collapsing 
of the local universe with the and cooling 

early universe is providing in dark 
insights into how galaxies matter halo 
have evolved on a cosmolog- 
ical time scale. Last October, 
astrophysicists gathered on a 
small island in the Venice la- 
goon for an European South- 
ern Observatory (ESO) 
workshop on one crucial as- Bulge 

formation 
pect of this comparison: the bycollapse 
mass of galaxies (1). ^ 

The starting point of the 
discussions was the mass of 
our own galaxy. The latest 
value for the mass of our 
galaxy's dark halo (which Diskformation 
holds most of the galaxy's gvepira 
mass) is about 2 x 1012 solar galaxy 
masses. Just 15 years ago, 
the best estimate for the total 
mass of our galaxy was an 
order of magnitude lower. 
Today's value has been de- Leading mod, 
rived from state-of-the-art evolution. In 1 
data for the radial velocities collapse model 
of the globular clusters (grav- cools and col 
itationally bound concentra- dark halo. It th 
tions of 10,000 to 1 million a disk. Finally, 
stars) that surround our forms, with s 
galaxy and of nearby "satel- dust in the disl 
lite" galaxies. These objects formed instead 
serve as tracers for our is followed by t 

accrete to forrr galaxy's gravitational poten- acce orlr 
The residual ga tial and hence its mass. A 

much higher accuracy will be achieved when 
the radial and transverse velocities of the 
satellite galaxies have been determined by 
GAIA, a space mission to be launched in 
2010 (2). 

Not only the mass of the dark halo of 
our galaxy is important but also its shape. 
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Is it highly flattened-as would be expect- 
ed if dark matter consists of molecular 
gas-or is it close to spherical? The flatten- 
ing of the halo is best expressed by the ratio 
between the shortest and the longest axis. 
In our galaxy, this ratio is believed to be 0.8 
(3, 4), suggesting that the Sun is closer to 
the galactic center and the velocity of 
galactic rotation smaller than currently rec- 
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ommended by the International Astronomi- 
cal Union. A higher flattening, implying an 
even larger deviation from these values, is 
considered highly improbable (3, 4). 

A lively debate in the astronomy commu- 
nity concerns the processes leading to the 
formation of galaxies. The key question is 
whether all galaxies formed early on through 
gravitational collapse in a "monolithic col- 
lapse" event and have since evolved in isola- 
tion or whether they are the result of succes- 

sive mergers between ever larger structures 
("hierarchical merging") (see the first fig- 
ure). These models lead to different distribu- 
tions of dark mass in galaxies. Numerical 
simulations suggest that in the hierarchical 
merging scenario, dark matter should peak 
in the centers of galaxies. Systematic study 
of the rotation curve of low surface bright- 
ness galaxies, which are believed to be dom- 
inated by dark matter, reveals that the densi- 
ty distribution is better fitted by a model 
with a central constant density core than 
with a peaked distribution, suggesting that 
more efforts are needed to reconcile simula- 
tion and observation (5, 6). 

It has recently been shown that the mass 
of the central black holes supposed to be 

present in the nuclei of 
galaxies is related to that of 
the galaxies' spheroidal 

_ 1^1 component, which repre- 
sents the entire galaxy if it is 
an elliptical one or the bulge 
if it is a disk galaxy. The 
mass of the bulge is 1000 
that of the black hole. The 
tightness of the relation is 
quite surprising and has im- 
portant implications for the 
way in which galaxies were 
formed. If this relation was 
established at the beginning 
of the galaxy formation pro- 
cesses, how can it still hold 
after the respective masses 
have been modified through 
many merger events among 
galaxies and gas acquisition 
by the black hole (7)? 

One of the best links be- 
tween the behaviors of lo- 
cal and distant galaxies is 
provided by their Tully- 
Fisher relations. In 1977, 
R. B. Tully and J. R. Fisher 
found that the intrinsic lu- 
minosity of disk galaxies is 
related to their maximum 
velocity of rotation, thus 

iptical galay is establishing a link between 
ng and collapse star formation history and 
:hen merge and the dynamical evolution of ftwo spiras galaxies. The Tully-Fisher 

relation is well established 
for local galaxies (see the second figure). 

A recent attempt to derive the Tully- 
Fisher relation for galaxies at intermediate 
distances (up to 10 billion light-years) indi- 
cates a lower slope than for local galaxies; 
the two curves intersect for the most mas- 
sive galaxies. This observation may indi- 
cate that the most massive galaxies evolved 
little during the past 10 billion years. In 
contrast, the less massive ones seem to 
have undergone a remarkable loss of lumi- 
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nosity during the same pe- 
riod. Explaining this re- -2 
suit constitutes a chal- E ' 
lenge for different models -20 
of galaxy evolution (8). > 

The exploration of dis- -8 
tant galaxies requires accu- .c 
rate and well-defined pro- E -16 
jects. In the past, many -i 
surveys were concerned 
with mapping the whole 1.5 
sky. In contrast, the sur- l! 
veys of the future will have 
to concentrate on well-defined areas at 
maximum resolution and with a range of in- 
struments. In this spirit, the Great Observa- 
tories Origins Deep Survey (GOODS) aims 
to survey a small area of the sky with sever- 
al major astronomical facilities (including 
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Galaxies near and far. 
The slope of the Tully- 
Fisher relation for 1200 
local spiral galaxies (pink) 
is steeper than that for 
60 spiral or irregular 
galaxies at intermediate 
redshift (green). The re- 
sult provides insights into 
how galaxies of different 

2.0 2.5 mass and luminosity may 
vmax (km/s) have evolved over time. 

the Chandra X-ray Telescope, the Hubble 
Space Telescope, and the ESO VLT tele- 
scope), covering the entire range of wave- 
lengths at our disposal (9). The total area to 
be surveyed is only 300 square arc min- 
similar to that subtended by the full Moon 
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but large enough to give us an idea of what 
happened at the beginning of the universe. 
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W ith the human genome sequence 
as an intellectual inspiration and 
practical scaffold, scientists are 

ready to perform experiments on all genes. 
Integrating the resulting genomewide infor- 
mation into useful definitions of protein 

function is a huge 
Enhanced online at challenge. Exactly 
www.sciencemag.org/cgi/ what form such func- 
content/full/295/5553/284 tional definitions will 

take is still debatable, 
but comprehensive networks of protein-pro- 
tein interactions, or interactomes, should 
prove valuable in helping to shape them. 

On page 321 of this issue, Tong et al. (1, 
2) describe a systematic approach for iden- 
tifying protein-protein interaction networks 
in which different peptide recognition do- 
mains participate. They break new ground 
in the way they combine "orthogonal" (that 
is, fundamentally different) sets of genomic 
information. Specifically, they study the in- 
tersection of two different interactomes. 
The first is derived from screening phage- 
display peptide libraries to find consensus 
sequences in yeast proteins that bind to par- 
ticular peptide recognition domains. The re- 
sulting network connects -proteins with 
recognition domains to those containing the 
consensus. This network partially defines 
binding sites in some of the proteins and 
represents a clever use of phage display 
technology. The second network is derived 
from experimentally testing each peptide 
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Overlapping nets. Two different extremes in int 
ing interactomes. The combined network on the 
the union of those interactomes with low false-pc 
but high false-negative rates, whereas the com 
network on the right is the intersection of interacl 
with low false-negative but high false-positive 
Circles represent proteins; links, interactions; and c 
lines, known associations. Thicker links indicate 
false-positive rates. More effective rules for coml 
networks than union and intersection take into ac 
the different error rates associated with each link 1 

recognition module, using the yeast two-hy- 
brid technique, for association with possi- 
ble protein-binding partners. Tong et al. ap- 
ply their approach to determine interacting 
partners for SH3 domains in yeast proteins. 
These domains make good targets because 
of their prevalence and involvement in a 
number of important biological processes, 
from cytoskeleton reorganization to signal 
transduction. 

The power of Tong et al.'s strategy, par- 
ticularly for reducing noise, becomes mani- 
fest when interpreting large genomic data 
sets. One fallacy in dealing with genomic 
data sets is ascribing too much meaning to 
individual data points. Many data sets (for 
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The power of Tong et al.'s strategy, par- 
ticularly for reducing noise, becomes mani- 
fest when interpreting large genomic data 
sets. One fallacy in dealing with genomic 
data sets is ascribing too much meaning to 
individual data points. Many data sets (for 

example, gene expression profiles) contain 
so much noise that it can be difficult to draw 
reliable conclusions for specific genes. 
These data sets still offer much useful infor- 
mation statistically, in terms of broad trends, 

but they are useful only insofar as 
the data can be aggregated. This can 

"\ be simply achieved by combining 
s9) replicates of an experiment, but 

4/s\ such a process does not remove sys- 
tematic errors. It is also possible to 
collect many individual measure- 

\ ments on different proteins into ag- 
) / gregate "proteomic classes," for ex- 

ample, functional categories, and to 
compare these (3-6). 

The new work points to perhaps 
left a. the most powerful approach: inter- 
>sitive relating and integrating orthogonal 
bined information. In the abstract, it is 
tomes easy to demonstrate that combining 
rates. independent data sets results in a 
lotted lower error rate overall. For in- 
lower stance, combining three indepen- 
bining dent binary-type data sets with error 
:count rates of 10% reduces the overall er- 
:ype. ror rate to 2.8% (for both false posi- 

tives and negatives) (7). Moreover, 
interrelating two different types of whole- 
genome data also enables one to discover 
potentially important but not obvious rela- 
tionships-for example, between gene ex- 
pression and the position of genes on chro- 
mosomes, or between gene expression and 
the subcellular localization of proteins (8, 
9). 

There have been a number of previous 
attempts to interrelate information from dif- | 
ferent genomic data sets. For instance, gene ,, 
expression profiles were initially analyzed | 
by a variety of supervised and unsupervised E 
methods-hierarchical trees, k-means, self- o 
organizing maps, and support-vector ma- a 
chines-and compared with protein func- s 
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