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(30-32), and the dissociated hydrogen (denoted 
as H* in Fig. 1) appearing on the surface of the 
opposite side of the membrane immediately 
reacts with oxygen to give HOO and H202. 
Then H202 is decomposed to HO-, atomic ox- 
ygen, and water. In the direct hydroxylation 
(8-12) of hydrocarbons with oxygen and hy- 
drogen catalyzed by transition metals, it has 
been considered so far that, at the first step, 
oxygen and hydrogen react with the catalysis of 
the metals to give hydrogen peroxide. We also 
recognized that this membrane reactor can eas- 
ily produce hydrogen peroxide under the reac- 
tion conditions used here without hydrocar- 
bons, and quite recently it was reported (33) 
that a similar palladium membrane works well 
in water as a reactor for the direct production of 
hydrogen peroxide from oxygen and hydrogen. 
Oxene, one of the active oxygen species pro- 
duced by the decomposition of hydrogen per- 
oxide, has been known to easily add to carbon- 
carbon double bonds, including conjugated 
ones such as benzene (7, 34). This type of 
addition is 103 times faster in rate than the 
hydrogen abstraction from the methyl group (7, 
35). Thus, it is not unreasonable to consider that 
oxene is largely responsible for the hydroxyla- 
tion in this membrane process. 

If the HO radical is the main active spe- 
cies, as has been considered (12), benzyl 
alcohol and benzaldehyde should be pro- 
duced more in the hydroxylation of toluene, 
as occurs with EuX3-TiO(acac)2-Pt oxide/ 
SiO2 (X = C1 and C104) catalysts (15). How- 
ever, it is difficult to specify the real active 
species from the three (HOO, HO, and ox- 
ene) at present, although it seems likely that 
the active oxygen species is derived from 
HOO and H202. 

It should be emphasized that this mem- 
brane system could be practical, because it is 
simple in structure; produces phenol in a 
yield of 1.5 kg per kilogram of catalyst per 
hour; and has a low probability of causing a 
detonating gas reaction, because oxygen and 
hydrogen are not simultaneously mixed. 
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Constraints on Melt Movement 

Beneath the East Pacific Rise 

From 230Th-238U Disequilibrium 
Haibo Zou,1'2* Alan Zindler,z2 Yaoling Niu3 

We report 230Th-238U disequilibrium data on mid-ocean ridge basalts recovered 
5 to 40 kilometers off the ridge axis near 9?30'N of the East Pacific Rise. These 
data indicate near-symmetrical eruptions of normal mid-ocean ridge basalts 
(NMORBs) and incompatible element-enriched mid-ocean ridge basalts 
(EMORBs) as far as 20 kilometers off axis. Our results suggest large-scale 
subsurface lateral transport of NMORB melt at 19 to 21 centimeters per year 
and also provide constraints on the petrogenesis of EMORBs of off-axis origin. 
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Lavas that erupt on the seafloor away from 
the axis of mid-ocean ridges (MORs) contain 
information about melting, melt movement, 
and crustal accretion processes associated 
with MOR spreading centers (1-3). For off- 
axis basalts to be used to develop a better 
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understanding of the process of melt move- 
ment, they must be demonstrably distin- 
guished from those originally erupted at the 
ridge axis. 230Th-238U disequilibrium can 
provide temporal information crucial to iden- 
tifying basalts of off-axis origin and has been 
used to study basalts as far as 4 km away 
from the ridge axis (4). To span a scale of 
melt movement beneath MORs that may be 
greater than 4 km, and to avoid large axial 
eruptions that send lava flows as far as 3.5 km 
away from the axis (5), we measured the 
230Th-238U disequilibrium of basalts from 5 
to 40 km off-axis. 

Our samples were collected during the 
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Phoenix-02 cruise (research vessel Melville) 
by dredging out to 40 to 50 km from the East 
Pacific Rise (EPR) on both the Cocos and 
Pacific plates near 9?30'N. In the vicinity of 
9?30'N, the EPR spreads almost symmetri- 
cally at 11.1 cm year-1 (6). Therefore, basalt 
sampled at distances of 40 to 50 km from the 
ridge axis corresponds to a spreading age of 
about 800 thousand years ago (ka). Samples 
were analyzed by secondary ion mass spec- 
trometry for Th isotopes and thermal ioniza- 
tion mass spectrometry for U and Pb isotopes 
(7). Pb isotopic compositions exhibited small 
variations in 208Pb/204Pb (37.60 to 38.05), 
207pb/204pb (15.47 to 15.57), and 206Pb/204Pb 
(18.18 to 18.56) ratios (Table 1). Because 
these Pb isotopic compositions represent 
long-term source U/Pb and Th/Pb ratios, the 
small range in Pb isotopic compositions for 
these basalts suggests a long-term, relatively 
homogeneous, U/Pb and Th/Pb source. (234U/ 
238U) ratios (where parentheses indicate an 
activity ratio) of all samples are close to 1.0, 
indicating that the Th-U systematics has not 
been perturbed by post-eruption alteration. 
The (230Th/238U) ratios of the off-axis basalts 
are therefore controlled by their initial (at the 
time of eruption) (230Th/238U) ratios and by 
the time elapsed since the eruption. The ini- 
tial (230Th/238U) ratios are determined by the 
mineralogy of the source of the melt (such as 
the relative amount of garnet and clinopyrox- 
ene) and the melting processes (such as the 
rate of melting and the porosity of the melting 
zone) (8-11). The initial (230Th/238U) ratios 
are independent of the source (230Th/238U) 
ratios because the source, before melting, is 
assumed to have reached secular equilibrium, 
or (230Th/238U) = 1. 

Our samples show almost symmetrical 
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patterns of (230Th/238U) variation with dis- 
tance from the axis (Fig. 1A), which are 
consistent with the symmetric patterns of 
K/Ti (Fig. 1B) and MgO (12) variations 
about the axis (13). Extending out to about 16 
km on either side of the ridge axis at 9?30'N, 
(230Th/238U) ratios decrease from 1.158 to 
1.233 [the range of zero-age samples from 
Goldstein et al. (14)] to 1.036 (sample PH6- 
2). This decrease can be explained by the 
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aging of the seafloor away from the spreading 
axis (Fig. 1), assuming that the basalts had a 
similar range in initial (230Th/238U) of 1.158 
to 1.233. Farther away from the axis, there 
are changes in (230Th/238U) ratios. On the 
Cocos plate, the (230Th/238U) ratios increase 
to 1.130 (PH8-1) and then drop to 0.894 
(PHI0-2), and on the Pacific plate, the 

(230Th/238U) ratios increase to 1.084 (PH33- 
3) and then decrease to 0.849 (PH34-1). Sam- 

,------i Fig. 1. (A) Comparison of three 
A measured (230Th/238U) ratios 

with calculated (230Th/238U) ra- 
tios using a half-spreading rate 
of 5.5 cm year-1 and initial 
(230Th/238U) ratios right after 
eruption of 1.23, 1.16, and 0.80, 

.... respectively. (B) Plot of K/Ti ver- 
sus distance from the axis. Near 
axis (<4 km) data are from (35). 

40 

Table 1. Locations of the basaltic samples at EPR 9?30'N and their U-Th 

disequilibrium and Pb isotope data. Distances from the ridge axis have 
uncertainties of less than 0.5 km. Measurement errors (2or) in U and Th 
concentrations by isotope dilution are <0.5%. The errors (2a) range from 0.5 
to 0.8% for (238U/232Th) and from 0.6 to 1.2% for (230Th/238U). Decay 

constants: A238 = 1.55125 x 10-1? year-1, A234 = 2.8262 X 10-6 year-1, 
=230 = 9.195 x 10-6 year-', and X232 = 4.948 X 10-11 year-'. P10-2R and 

P37-1R are duplicate samples for Th concentration and (230Th/232Th) only. U 
concentrations from P10-2 and P37-1 are used to calculate (238U/232Th) and 

(230Th/238U) for P10-2R and P37-1R, respectively. ppb, parts per billion. 

Sam- Latitude Longitude Depth Distance U Th (34/238) (8U/ Th) 23Th/232Th) (230Th/38 208p 4p 207p 4p 206p 4p 
pie (N) (W) (m) (km) (ppb) (ppb) 
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P37-1R 

9?31.05' 
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1.011 + 16 
1.011 +8 
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1.119+ 7 
1.280 + 9 
1.313 ?+ 11 
1.246 + 8 
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1.174 + 10 
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1.284 + 10 
1.004 + 8 
1.019 ? 8 
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ples PH8-1 and PH33-3, with 230Th excesses, 
have almost identical light rare earth element 
(LREE)-depleted patterns, and both are nor- 
mal mid-ocean ridge basalts (NMORBs); 
samples PH10-2 and PH34-1, however, with 
230Th deficits, have similar LREE-enriched 
patterns, and both are incompatible element- 
enriched mid-ocean ridge basalts (EMORBs) 
(Fig. 2). Assuming that PH33-3 was initially 
erupted at the axis and then moved to its 
present position by seafloor spreading, and 
using a half-spreading rate of 5.5 cm year-' 
(6), the age predicted from its location would 
be about 350 ka (about five half-lives of 
230Th). Given the highest zero-age (230Th/ 
238U) ratio of 1.233 as the initial value, sec- 
ular equilibrium should have been achieved 
in PH33-3 after 350 ka. Similarly, using the 
same spreading rate and initial (230Th/238U) 
ratio, the predicted (230Th/238U) ratio would 
be 1.017 for PH8-1. From a different perspec- 
tive, if we again assume both PH33-3 and 
PH8-1 were erupted on axis, then the initial 
(230Th/238U) ratios for these two NMORBs 
would have been about 3.0. However, (230Th/ 
238U) ratios reported so far for zero-age 
MORBs globally are less than 1.5 (15). We 
suggest that samples PH8-1 and PH33-3 were 
formed by off-axis volcanism by melting of a 

Fig. 2. Primitive man- 
tle-normalized abun- 
dance patterns for high- 
ly to moderately incom- 
patible elements in four 
samples with unusual 
U-Th disequilibrium re- 
sults. Normalizing val- 
ues are from (29). 

100 

Q) 

E 
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Fig. 3. A sketch illustrating the mantle 
dynamics beneath the MOR at 9?30'N 
constrained by U-Th disequilibrium data. 
The sketch shows only the right half of 
the near-symmetrical melting zone. Dot- 
ted lines represent solid mantle flow, solid 
lines represent melt flow, and the dashed 
line is the base of lithosphere. The en- 
riched mantle blob may not be restricted 
to the marked region. 

source with DTh < Do, where DTh and Du 
are bulk partition coefficients for Th and U, 
respectively (16). One candidate source may 
be peridotites with garnet and/or high-sodium 
clinopyroxenes (17-20) from the upper man- 
tle. The two EMORB samples (PH10-2 and 
PH34-1) that have (230Th/238U) ratios of less 
than 1.0 are even farther away from the 
spreading ridge and should not have any de- 
tectable U-Th disequilibrium if they were 
originally erupted at the axis. Therefore, they 
were also produced by off-axis volcanism. 
Because their (230Th/238U) ratios are as far 
from secular equilibrium as those measured 
from samples from the mid-Atlantic ridge at 
29? to 30?N (15), we infer that they erupted 
close to their present locations. Unlike sam- 
ples PH8-1 and PH33-3, with (230Th/238U) 
ratios greater than 1.0, samples PH10-2 and 
PH34-1, with (230Th/238U) ratios less than 
1.0, were principally produced by melting in 
a source with DTh > DU. One candidate 
source is a calcium-clinopyroxene-rich 
spinel peridotite from the upper mantle (21- 
24). Samples PH35-1 and PH36-7 on the 
Pacific plate also have (230Th/238U) ratios 
less than 1.0, but their (230Th/238U) ratios are 
somewhat closer to secular equilibrium than 
is that of PH34-1, which is consistent with the 

RbBaTh Nb U TaLaCePbPr Sr PbNd Zr HfSmEuGdTi TbDyHo Y ErTmYbLu 

fact that they are farther away from the 
spreading axis. As for samples PH14-1, 
PH18-2, and PH37-1, which are also well off 
axis, their (230Th/238U) ratios are close to 1.0. 
Their close approach to secular equilibrium 
indicates that they are >350 ka. Consequent- 
ly, these three samples were most likely pro- 
duced at the ridge axis. Samples PH19-4 (at 
+39.8 km) and PH39-2 (at -31.9 km), far- 
thest away from the ridge axis, were also 
erupted at the ridge axis, based on 40Ar-39Ar 
ages of >500 ka for both samples (25). 

Based on estimated initial (230Th/232Th) 
and (231pa/235U) ratios in MOR samples col- 
lected 4 km from the ridge axis, Goldstein et 
al. (4) inferred that some volcanism can oc- 
cur as far as 4 km away from the spreading 
axis. Our U-Th disequilibrium study of ba- 
salts recovered from as far as 40 km away 
from the axis supports the occurrence of off- 
axis eruptions and further suggests that some 
volcanism can occur at more than 20 km off 
axis. More importantly, our results place con- 
straints on melt movement beneath MORs. 
Off-axis vents could have erupted either lavas 
transported laterally from a focused axial 
magma system or those transported vertically 
from independent off-axis magma systems. 
Although symmetric off-axis NMORB mag- 
ma systems cannot be ruled out, the fact that 
PH8-1 and PH33-3 have similar trace ele- 
ment compositions (Fig. 2) can be explained 
by subsurface lateral transport of magma 
from the same axial system in opposite direc- 
tions (Fig. 3). The physics for the large-scale 
subsurface lateral transport of melt is not 
clear. A possible mechanism is continued sill 
propagation under the condition of sufficient 
magma supply (26). Based on our model 
(27), the lateral velocity of the melt that 
generated basalts PH8-1 and PH33-3 is cal- 
culated to be 19 to 21 cm year-1, which is 
much faster than the half-spreading rate of 
5.5 cm year-l. On the other hand, off-axis 
eruptions of EMORB samples such as 
PH10-2 and PH34-1 can be explained by 
independent symmetric off-axis magma sys- 
tems, because EMORBs with 238U excesses 
have not been reported among measured ze- 
ro-age ridge axis basalts at 9?30'N (14). The 
enrichments in LREEs and the low (230Th/ 
238U) ratios in PH10-2 and PH34-1 are con- 
sistent with a metasomatized spinel peridotite 
source that contains calcium-clinopyroxene 
and amphibole. Similarity among the Pb iso- 
topic compositions of these basalts and of 
other NMORBs suggests that the mantle 
source was not metasomatized long enough 
ago to change Pb isotopic compositions. The 
observed peaks at Nb and Ta in the primitive 
mantle-normalized spider diagram (28, 29) 
in these two samples (Fig. 2) suggest that a 
likely source of the metasomatic fluids is 
recycled oceanic crust (30-32). The proxim- 
ity of lavas with high (230Th/238U) > 1.0 

www.sciencemag.org SCIENCE VOL 295 4 JANUARY 2002 109 



REPORTS REPORTS 

(e.g., PH33-3) and those with low (230Th/ 
238U) < 1.0 (e.g., PH34-1) suggests spatially 
restricted magma transport routes to the sur- 
face for some off-axis volcanism. In addition, 
near-symmetrical off-axis eruptions in a 
broad region are more consistent with passive 
mantle flow driven by plate motion (1, 2) 
than with active mantle flow driven by buoy- 
ancy in a narrow region (about a few 
kilometers). 
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Formation of Recent Martian 

Debris Flows by Melting of 

Near-Surface Ground Ice at 

High Obliquity 
F. Costard,1 F. Forget,z* N. Mangold,1 J. P. Peulvast1 

The observation of small gullies associated with recent surface runoff on Mars has 
renewed the question of liquid water stability at the surface of Mars. The gullies 
could be formed by groundwater seepage from underground aquifers; however, 
observations of gullies originating from isolated peaks and dune crests question this 
scenario. We show that these landforms may result from the melting of water ice 
in the top few meters of the martian subsurface at high obliquity. Our conclusions 
are based on the analogy between the martian gullies and terrestrial debris flows 
observed in Greenland and numerical simulations that show that above-freezing 
temperatures can occur at high obliquities in the near surface of Mars, and that such 
temperatures are only predicted at latitudes and for slope orientations corre- 
sponding to where the gullies have been observed on Mars. 
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The observation of small gullies on Mars was 
one of the more unexpected discoveries of the 
Mars Observer Camera (MOC) aboard the 
Mars Global Surveyor spacecraft (1). The 
characteristics of these landforms suggest the 
local occurrence of a fluid emanating from 
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alcoves located mostly in the upper part of 
poleward-facing slopes at mid- and high lat- 
itudes. Thick accumulations of debris cover 
the bases of escarpments, whereas the upper 
parts of the walls have generally steep slopes 
that are dissected by funnels (Fig. 1A). Malin 
and Edgett (1) convincingly argued that the 
gullies were probably created by debris flows 
composed of liquid H20 mixed with rocks 
and residual water ice [alternative scenarios 
include speculations about liquid CO2 break- 
out (2) and saline groundwater or brine (3)]. 
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