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Human use of photosynthesis products is per- 
vasive, includmg direct use of plants for food 
and fiber as well as indirect use from grazing by 
domesticated animals. Population increases 
have led to speculation and estimates that the 
human footprint on the biosphere, in terms of 
the use of both plants and fresh water, is ap- 
proaching the limit of planet sustainability (1- 
5). A key measure of human impact on the 
biosphere and hydrosphere is human use of 
terrestrial net primary production (TNPP), 
whch represents the net energy (production 
minus respiration) created by carbon fixa- 
tion on land. Previous estimates of global 
human appropriation of ths  biological resource 
(HTNPPFwhich governs the total amount of 
food available on Earth-and its surrogates (1, 
6-8) have used mean estimates of parameters 
that were made on the basis of limited, small- 
scale field studies. Here we incorporate con- 
temporary data, many of whch are satellite- 
based, to estimate HTNPP, and quantify the 
uncertainty in our knowledge of HTNPP. 

HTNPP revresents the combined effects of 
direct human use and use by human-altered 
ecosystems (9). We adopted the method of Vi- 
tousek et al. (1) to estimate HTNF'P (Table 1 
and Fig. l), which uses global averages and 
sums the influences of agriculture, human-occu-
pied lands, grazing, and forestry. To estimate 
HTNF'P, we used available global-scale primary- 
source data in the literature (lo). We did not 
include studies earlier than 1990 for parameters 
with large temporal variability (e.g., parameters 
dependent on areas or populations). We also 
removed estimates that appeared to be highly 
anomalous (more than two standard deviations 
from the other estimates). Reflecting the format 
of Vitousek et al. (1) and the majority of data 
sources, we present biomass and productivity 
values in terms of the weight of dry matter 
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(DM). Conversion of data from weight carbon 
(C) to DM included a 10% uncertainty in carbon 
content (0.45 to 0.50 g C per g DM), reflecting 
commonly cited carbon values (11-16). 

We estimated uncertainty for parameters 
with only one or two literature references using 
either literature-cited values or an ad hoc esti- 
mate that the standard deviation was one-half of 
the mean (1 7, 18). Although 8 of 34 parameters 
are estimated with a single measurement, the 
median number of measurements per parameter 
is 5.5, indicating that half of the parameters have 
enough independent measurements to provide at 
least rudimentary evaluation of their uncertain- 
ty. Only nine parameters have normalized 2u 
error bounds less than unity, indicating that most 
parameters are not well known. Uncertainty in 
our parameters, however, does not significantly 
increase and correlate with sample size ( u 2  = 
0.10 for estimates using three or more samples), 
which reflects the fact that the literature-based 
estimates we used are derived, either directly or 
indirectly, from physical measurements. Differ- 
ences between our mean estimates and those of 
Vitousek et al. (I) represent updates using new- 
er literature. Coincidentally, the median differ- 
ence for all 34 of the parameters is negligible, 
-1.2%. 

In addition to using more contemporary and 
larger scale measurements, we explicitly incor- 
porated uncertainty in our estimate of HTNPP 
through stochastic simulations. Monte Carlo 
techniques allow each parameter to randomly 
vary constrained by its mean and estimated 
variance. We derived an estimate of variability 
in our knowledge of HTNPP by repeating these 
calculations 1 million times (19). 

Our mean estimate of HTNPP is 39 Pg DM 
(20 Pg C, where we assume carbon is 50% of 
dry matter) (Fig. 2) or 32% of TNPP (20),whch 
almost precisely matches that of Vitousek et al. 
(I). This agreement is coincidental because our 
newer estimates of the parameters are consider- 
ably different from those of Vitousek et al. The 
mean absolute difference between our estimate 
of the contributing parameters and Vi-
tousek et al. is, excluding the values for four 
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Fig. 1. Template used to estimate HTNPP. The formula on which the occupied lands; f, forests; ag, agriculture; gnl, livestock grazing on natural 
template is based is the intermediate calculation of Vitousek et al. (1, 9). lands; ags, burning in savannas; sc, shifting cultivation; tp, tree plantation; 
Gray boxes represent independent parameters and are defined in Table 1. fc, forest clearing (land use change); fh, industrial forest harvesting; nhi, 
White boxes represent dependent parameters and are intermediate or not harvested but affected industrial forest; scstrf, shifting cultivation in 
final calculations. Abbreviations: HTNPP, co-opted terrestrial NPP; A, secondary tropical forests; scs, shifting cultivation in savannas; fhctr, 
area; CB, co-opted biomass. Subscripts: g, livestock grazing; ho, human- industrial forest harvesting in tropical forests. 

parameters (17) directly assumed from (I), 
37%; positive differences in some parameters 
are fortuitously canceled by negative differences 
in others. 

Five parameters (Table I), two of which are 
area calculations, have updated estimates with 
standard error bounds below or above the esti- 
mates of Vitousek et al. (I): area of forest 
converted to grazing ( A d ,  area of tree planta- 
tions (Ad, clearing rate of shifting cultivation 
(CRA, population that uses shifting agriculture 
(POPA, and volume of forest harvest for wood 
used for construction and fiber in temperate 
areas (V,,,J. With the exception of CR,, each 
estimate is based on limited updated data and 
relies heavily on recent compilations from the 
Food and Agriculture Organization (FAO) of 
the United Nations (21-27). It is debatable 
whether updated estimates for these parameters 
are more valid than those obtained earlier, but in 
any case, these five parameters have little bear- 
ing on our results. Our mean estimate of 
HTNPP is unchanged at 39 Pg if we use the 
earlier estimates (1) for these parameters. How- 
ever, the variance in our estimates of parameters 
does influence uncertainty in our estimate of 
HTNPP significantly. The 95% confidence in- 
tervals in our estimates of HTNPP are 227 Pg 
DM (14 Pg C) (28). These error bounds are so 
wide that mean estimates of HTNPP like that 
obtainkd here and earlier have limited utility. 

Although there is a large degree of uncer- 
tainty, it is clear that human impact on TNPP is 
significant. The lower bound on our estimate 
(12 Pg DM, 6.0 Pg C), although nowhere near 
total TNPF', indicates that humans have had 
more impact on biological resources than any 
single species of megafauna known over the 
history of Earth. 

0 20 40 60 80 100 

Annual Sequestered NPP (Pg) 

Fig. 2. Histogram of estimate of HTNPP allowing all parameters in the formula to vary with limits 
set by their estimated uncertainty. Histogram represents 1 million simulations. All independent 
parameters were constrained to be greater than zero. "Population" refers to the number of 
estimates represented by each data point on the plot. 

The uncertainty in our estimates also has 
implications for assessing the state of human use 
of fksh water. Postel et al. (2) used mean esti- 
mates of HTNPP obtained from Vitousek et al. 
(1) to estimate that 26% of all terrestrial evapo- 
transpiration is appropriated by humans. The 
high degree of uncertainty in our understanding 
of HTNPP means that Postel et al.'s estimate 
may significantly overestimate or underestimate 
human appropriation of evapotranspiration. 
Given our relatively poor knowledge of 
HTNPP, we cannot know whether human im- 
pact on our plant and water resources is in a state 
of crisis. 

We reran our Monte Carlo simulations and 
systematically held every variable constant ex- 
cept one to determine the influence of variability 
of each parameter on our estimate of HTNPP 

(Fig. 3). The most significant variables are ag- 
ricultural productivity (PR,,) and biomass of 
secondary tropical forest @&). Estimates of 
PR,, and B,, are extensive in the literature, but 
they vary widely. It is not surprising that there 
would be a high degree of variability in these 
parameters. PR,, and B,,can be expected to be 
highly heterogeneous. Depending on fertilizer, 
higation, and crop type, PR,, can vary by as 
much as a factor of 5 from field to field (14, 
29-31). 

Uncertainty in h e  other parameters-area 
of agricultural lands (A,&, biomass of forest 
areas permanently cleared for population in- 
crease and colonization (B,J, and proportion of 
shifting cultivation in secondary tropical forest 
(P-)-contributes significantly to our uncer- 
tainty in HTNPP (greater than 6 Pg DM varia- 
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Table 1. Description of variables in the formula used (see Fig. 1) with updated estimates. Weights are in units dry matter. For source values and references 
beyond (31), see Science Online (www.sciencemag.org/cgi/content/fulV294/5551/2549/DCl). 

Source variable 	 Description 

4, (m2) Area of agricultural land (21, 33-43) 

Af, (m2) Area permanently cleared for population increase and colonization (26, 43-48) 

A,,, (m2) Area of forest converted to grazing for all time (21) 

AhO (m2) Area of human-occupied lands (38-40, 49) 

A, (m2) Area of savanna (39-40, 42, 44, 50-52, 215) 

A,,, (m2/year) Area cleared in tropical virgin forests by shifting cultivation (1, 53, 54) 

Atp (m2) Area of tree plantations (12, 22-24, 47, 55-57) 


BfC (Pg/m2) Biomass of forest areas permanently cleared for population increase and 

colonization (1, 1 1-14, 27, 47, 48. 50, 58-109, 7 7 7-1 16, 214) 

Biomass of savanna in shifting cultivation (including below-ground) (13, 39, 

48-50, 54, 98, 109, 1 70, 1 13-129) 

Biomass of above-ground grasses in burned savanna (1, 103, 104, 109, 

130-141) 

Biomass of secondary tropical forest (including below-ground) (1 1, 12, 48, 

72-89, 109, 115, 116, 142, 143) 

Biomass of tropical forests (including below-ground) (1 1, 13, 16, 27, 47, 48, 

50, 84-103, 107-114, 143-150) 


CRsc(m2 Clearing rate of shifting cultivation (1, 53, 102, 151, 152) 

person-' year-') 

NPP,d (Pg/year) NPP of firewood (27, 44, 54, 55, 752-159) 

NPP,,, (Pdyear) NPP eaten by livestock (1, 8, 109, 160-164) 


Pfb1,f Proportion of forest biomass relative to merchantable fraction (1, 15, 16, 

68-72, 89, 90, 104, 107, 115, 158, 166-171) 

Proportion of firewood that is met by land clearing and cultivation (102, 104) 

Proportion of burning on natural grazing lands (1) 

Proportion of productive human-occupied lands (13) 

Proportion of natural pasture grazed by livestock relative to all grazed pasture 

lands (1) 

Proportion of NPP eaten by livestock that comes from natural lands (172) 

Proportion of firewood harvested but not used every year (1) 
'nhfwd 

pop, ,  Population that uses shifting agriculture (25, 773) 


PR,g Productivity of agricultural lands (1, 13, 14, 30, 31, 39, 42, 48, 91, 98, 105, 

(Pg m-2 year-') 109-112, 116, 129, 174-178) 


PR,P Productivity of lands converted to pasture (1, 13, 14, 30, 31, 39, 48, 50, 101, 

(Pg m-2 year-') 105, 109-112, 116, 129-132, 154, 778-196) 


PRh, Productivity of human-occupied lands (39, 197) 

(Pg m-2 year-') 


PRtp Productivity of tree plantations (12, 13, 39, 55, 95, 96, 109, 198) 

(Pg m-2 year-') 

P<h Proportion of savanna burned annually (44, 54, 125, 157, 179, 199-202) 


Proportion of shifting cultivation in savannas (1, 72, 152, 203, 204) 

Proportion of shifting cultivation in secondary tropical forest (44, 53, 72, 87, 

109, 152, 204) 

Proportion of wood that humans use of tree plantation origin (22, 55) 

Density of fiberlconstruction wood (1, 12, 15, 16, 89, 99, 106, 107, 115, 170, 

205-2 13) 

Volume of forest harvest for wood used for construction and fiber in temperate 

areas (26, 27, 36) 

Volume of forest harvest for wood used for construction and fiber in tropical 

areas (27) 


tion). Two of these parameters are area calcula- tilizer use. Without these types of future assess- 

tions and indicate that our lack of knowledge ments, the magnitude of the human footprint on 

extends to what should be relatively simple Earth is open to much speculation. 

parameters to measure precisely. 
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Fig. 3. Sensitivity analy- 14 
sis showing key indepen- 
dent parameters that 
strongly influence uncer- 12 
tainty in our estimate of 
HTNPP. Analysis was per- - 10
formed by systematically 
holding all variables (ex- rn 
cept one) constant and 8 
equal to their mean. Each n 
parameter was allowed E 
to vary randomly 1 mil- 1 

lion times. NS 

4 

2 

0 


+ (POP,, X CR,, X Bs-) + ( A ~ IX P,, X Bt*) 

f (A. x Bf-) - (NPPkd x pkdit) + (Vfhct PW) 

+ (Vfict, x pW)+NPPkd + (Ahox ph, x PRh.1 
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