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(Fig. 4A). In contrast, Deltal, Hes-I, and 
Notchl, 2, 3, and 4 expression levels and 
cellular localization of Hes-1 appeared un- 
affected [Fig. 4A and Web fig. 4 (14)l. 
These observations are consistent with pre- 
vious findings that Mathl is upstream of 
NeuroD (27) and the notion that Mathl has 
a positive feedback effect on Notch ligand 
(e.g., Delta3) expression. 

Our fmdings provide new insight into the 
role of Notch-mediated lateral inhibition in 
controlling differentiation of intestinal epi- 
thelial lineages. Building on the model set 
forth by Bjerknes and Cheng (8), we propose 
that a single self-maintaining stem cell gives 
rise to two daughter cells directly or through 
intermediate progenitors (Fig. 4B). In one 
daughter cell, interaction between Delta and 
Notch homologs elevates Hesl expression, 
inhibiting Mathl expression, and this cell 
adopts an enterocyte fate. In the other daugh- 
ter cell, lack of Hesl expression increases 
Mathl expression, and this cell becomes a 
committed multipotent progenitor that will 
differentiate into a secretory lineage cell (Fig. 
4B). Further differentiation of the secretory 
lineage into goblet, enteroendocrine, and 
Paneth cells requires other factors. NeuroD 
has been shown to play a role in differentia- 
tion of the secretin and cholecystokinin en- 
teroendocrine cells (24); early committed 
multipotential endocrine cells can branch into 
at least three lineages (Fig. 4B) (24). Racl is 
reported to play a positive role in goblet and 
Paneth cell differentiation but does not seem 
to have any impact on the enteroendocrine 
lineage (18), suggesting that goblet and Pan- 
eth cells share a closer relationship during 
later development. Constitutively activated 
Racl causes precocious enterocyte growth, 
indicating its positive role in the absorptive 
cell lineage (18). These observations suggest 
that there is cross talk between the Notch and 
Rho GTPase pathways during formation of 
the gut epithelium. We cannot yet rule out other 
models for controlling the secretory and absorp- 
tive lineages: e.g., instead of arising from one 
Mathl-positive progenitor, the goblet, en-
teroendocrine, and Paneth cells may differenti- 
ate from three distinct progenitors that each 
express Mathl. Further study of Mathl in the 
mouse intestine will yield deeper insight into 
the mechanisms controlling production of the 
different cell types, which may in turn provide 
therapeutic tools for endocrine and colorectal 
cancers and regeneration of the intestinal epi- 
thelium after injury. 
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The Staphylococcus aureus multidrug binding protein QacR represses tran- 
scription of the qacA multidrug transporter gene and is induced by structurally 
diverse cationic lipophilic drugs. Here, we report the crystal structures of six 
QacR-drug complexes. Compared to the DNA bound structure, drug binding 
elicits a coil-to-helix transition that causes induction and creates an expansive 
multidrug-binding pocket, containing four glutamates and multiple aromatic 
and polar residues. These structures indicate the presence of separate but linked 
drug-binding sites within a single protein. This rnultisite drug-binding mecha- 
nism is consonant with studies on multidrug resistance transporters. 

The emergence of multidrug resistance In cancer cells, resistance to chemotherapeu- 
(MDR) has been attributed in part to mem- tic agents is mediated by the P-glycoprotein 
brane transport systems capable of effluxing efflux pump (5, 6), whereas in bacteria MDR 
a broad spectrum of toxic compounds (1-4). transporters are responsible for resistance to 

many clinically important antimicrobial com- 
pounds (7, 8). The serious health threat posed 
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cationic lipophilic antiseptics and disinfec- 
tants such as quaternary ammonium com-
pounds (QACs) (9-12). Studies on MDR 
transporter proteins have provided evidence 
for the presence of multiple, possibly over-
lapping, drug-binding sites within each pro- 
tein (13-18). However, advances in under- 
standing the basis of multidrug recognition 
has been hampered by the difficulty of per- 
forming high-resolution structural analyses 
on integral membrane proteins. 

Structural studies on cytosolic multi-
drug-binding regulatory proteins provide 
an alternative in delineating multidrug 
binding mechanisms. Structures of several 
regulatory proteins bound to a particular 
drug have been determined; the Escherich-
ia coli MarR repressor bound to salicylate 
(19), the Bacillus subtilis transcriptional 
activator BmrR bound to tetraphenylphos- 
phonium (TPP') and DNA (20) and the 
human nuclear xenobiotic receptor (PXR) 
bound to the cholesterol lowering drug 
SR12813 (21). The 23-kD S. aureus QacR 
repressor, a member of the TetR family of 
repressors (22), is another multidrug bind- 
ing protein, which regulates the expression 
of the qacA MDR pump gene (23, 24). 
QacR is induced by binding mono and 
bivalent cationic lipophilic drugs, many of 
which are substrates of QacA. We report 
here the structures of OacR bound to six of 
these structurally diverse cytotoxic agents 
("drugs"), rhodamine 6G (R6G), ethidium 
(Et), dequalinium (Dq), crystal violet (CV), 
malachite green (MG) and berberine (Be) 
(Fig. 1). 

The structure of QacR bound to R6G was 
determined by multiple wavelength anoma-
lous dispersion (MAD) (Fig. 2A, Table 1) 
[Web fig. 1, Web table 1 (25)] (26, 27). QacR 
is entirely helical and comprises nine helices 
(Fig. 2B). The first three helices form a three- 
helix bundle DNA binding domain, which 
contains a helix-turn-helix (HTH) motif (a2 
and a3). Helices 4 through 9 form the drug 
bindingidimerization domain and formation 
of the dimer buries 1530 A2 of surface area 
per monomer. The structure reveals that 
QacR binds one R6G molecule per dimer 
(Fig. 2B). Equilibrium dialysis and Scatchard 
analyses [Web fig. 2 (25)] confirmed the 1 :2 
(drug:QacR subunit) stoichiometry (28). In 
contrast, the family member TetR binds two 
tetracycline molecules per dimer. However, 
the multidrug binding proteins, EmrR and 
BrnrR, also appear to bind their ligands with 
a 1 :2 (drug:subunit) stoichiometry (29, 30). 

Comparison of the R6G-bound structure 
with a QacR-DNA structure determined in 
our lab (Fig. 2, C and D) reveals that binding 
of the drug triggers a coil-to-helix transition 
of residues Thr89-Tyr93 (Fig. 2B) of the drug- 
bound subunit only, such that the COOH- 
terminus of a 5  is elongated by a turn; the 

drug-free subunit in the dimer retains the 
"DNA-bound" coil structure (31) [Web fig. 1 
(25)l. This transition is likely facilitated by 
the conversion of Tyr9', which is the only 
Ramachandran outlier in the drug-free state, 
from an unfavorable to a favorable conforma- 
tion. In its unfavorable coil position, Tyr92 
plays an essential role in formation of the 
protein hydrophobic core. Upon drug bind- 
ing, Tyr92 is expelled from the hydrophobic 
core into the solvent. Tyr93 is also dislodged 
from the hydrophobic core to a peripheral 
site, where it stacks with R6G (Fig. 2, C and 
D). Tyr9' and Tyr93 thus act as structural drug 
surrogates that stabilize the inducer-binding 
pocket in the absence of drug. 

The coil-to-helix transition is the key not 
only for drug binding but also for induction 
as the formation of the additional turn of 
helix leads to the relocation of a 6  and its 
tethered DNA-binding domain (Fig. 2C). 
Movement of a 6  leads to a 9.1 A translation 
and 36.7" rotation of the DNA-binding do- 
main, relative to DNA-bound QacR (31). 
There is also a pendulum motion of a 4  upon 
drug binding (Fig. 2C). Concomitant struc- 
tural changes, necessary for retention of in- 
teraction between the a 6  and a6 '  helices, in 

-3 

Rhodamine6G(R6G) Ethidium(Et) 

Malachite Green(MG) 

the drug-free subunit of the dimer also occur. 
The DNA-binding domain of the drug-free 
subunit undergoes a 3.9 A translation and 
18.3" rotation compared to the DNA-bound 
conformation. Overall, there is a large in- 
crease in the center-to-center distance of the 
recognition helices from 37 A (DNA-bound 
form) to 48 A (drug-bound form). In contrast, 
in TetR there is only a 3 A increase in the 
center-to-center distance of the recognition 
helices upon tetracycline binding (32). 

The drug-binding pocket created by ty- 
rosine expulsion is extensive and composed 
of residues from all helices of the inducer- 
binding domain except a9,  as well as resi- 
dues from a8 '  (where prime indicates the 
other subunit of the dimer). The portal to 
the aromatic ligand-binding site is formed by 
the divergence of a6,  a7, a8,  and a8'.  Be- 
cause this portal is the only apparent entry 
into the pocket, the structure suggests a pos- 
sible explanation for the 1 :2 drug:QacR stoi- 
chiometry. The COOH-terminus of a8,  the 
intervening turn (T) and the NH2-terminus of 
a 9  are apposed to residues in the conforma- 
tional switch region of a 5  and a 6  (Fig. 2C), 
and thus the drug induced coil-to-helix tran- 
sition forces the movement of a8-T-a9 into 

Fig. 1. The chemical struc- 
tures of six cationic li-
pophilic drugs bound by 
QacR that were used in 
this study. The positively 
charged nitrogens are in- 
dicated. Note the biva- 
lent nature of the induc- 
er, dequaliniurn. 

Crystal Violet (CV) 
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the drug-binding pocket of the neighboring 
subunit, limiting access to its entrance. 

Within the drug-binding pocket, the three- 
ring system of R6G is wedged between Trp6' 
from a 4  and Tyr93 from a 5  (Fig. 3A). The 
phenyl moiety makes hydrophobic interac- 
tions with Tyr123 and Led4, whereas its ox- 
ygen moiety, 027A, hydrogen bonds to a 
water molecule. Additional water molecules 
fill the portion of the large drug-binding 
pocket that is unoccupied by drug. Aspara- 
gine, glutarnine, threonine, and serine resi- 
dues in the pocket provide versatility for 
contacting polar moieties of different drugs. 
In the QacR-R6G complex, contacts 
the R6G N1 atom and and T P 9  con- 
tact the R6G N2. The R6G ring system is 
further anchored by an interaction between 
the central ring 0 1 atom and the Oy of T P 9 .  

A distinguishing feature of multidrug 
binding proteins that recognize cationic drugs 
appears to be the presence of buried negative- 
ly charged glutamates or aspartate residues. 
This was clearly demonstrated in the BmrR- 
TPP+-DNA structure, which contains a bur- 
ied glutamate, G ~ u ~ ~ ~ ,  critical for drug bind- 
ing (20). In the QacR drug-binding site there 
are four glutamate residues, G ~ u ~ ~  and GW8 
from a4, Glu90 from 1x5, and Glu120 from a7, 
all of which are partially buried and surround 
the drug-binding pocket. In the QacR-R6G 
complex, Glu90 neutralizes the positively 
charged ethyl ammonium group of the drug 
(Fig. 1). Glu90 is also part of the conforma- 
tional switch region of a 5  and is translocated 
into the drug-binding pocket only upon drug 
binding. 

All QacR-drug structures described in this 
study (Fig. 1 and Table 1) utilize the identical 
induction mechanism. In the QacR-Et struc- 
ture the Et is bound in a pocket that is distinct 
but partially overlaps that of the R6G binding 
site (compare Fig. 3, A and B). The "Et 
pocket" is closer to the proposed "portal" 
entrance than the "R6G pocket," yet the 
phenanthridinium ring system of the Et is 
adequately inserted to elicit the tyrosine ex- 
pulsion process and thus, flip the induction 
switch. Unlike the R6G complex, the formal 
positive charge on the Et (Fig. 1) is not 
complemented by Glu90, but by Glu120 (27). 
Two aromatic residues, Tyr103 and Phe162', 
sandwich the phenanthridinium system and 
additional stacking interactions, including 
those between Tyr123 and the ethidium exo- 
cyclic 6-phenyl moiety, secure the Et (Fig. 
3B). The most buried phenanthridinium phe- 
nyl group is wedged between Ile99 and Ile1O0 
from 1x6, while its N1 amino group nitrogen 
is hydrogen bonded to the OE2 of Gln96. As 
in the QacR-R6G, several solvent molecules 
occupy the void in the pocket that is not filled 
by drug. 

The volume of the drug-binding pocket, 
which has dimensions of - 10 A by 9 A by 23 

R E P O R T S  

1 B 

Tyrosine Expulsion ..-- 

Fig. 2. The mechanism of multidrug binding and induction. (A) Simulated annealing omit map of 
the R6C drug-binding pocket. Composite electron density omit map (contoured at 1.5 a) calculated 
with a starting temperature of 2000 K and excluding R6G from the model. Carbon, nitrogen, and 
oxygen atoms are colored yellow, Light blue, and red, res ectively. (B) Structure of the drug-bound 
QacR-R6G complex. QacR consists of nine helices: al&-18). a2(25-32), a3(36-42). a4(46-71). 
a5(75-88; 75-93 in the drug-bound subunit, see below), a6(96-108), a7(110-136), a8(145-162), 
and a9(168-185). The yellow region (residues 89 to 93) forms a helix upon drug binding. The bound 
R6G is shown as balls and sticks with carbon, oxygen, and nitrogen colored gray, red, and blue, 
respectively. (C) Superimposition of the core drug-binding region, residues 55 to 188, of the 
DNA-bound conformation (yellow) onto the drug-bound conformation (blue) revealing the struc- 
tural changes that occur upon drug binding. R6G is depicted as a red stick model. The DNA-binding 
recognition helix is labeled H,. (D) Close-up view of the R6C binding pocket before (yellow) and 
after (blue) drug binding depicting the drug-induced tyrosine expulsion of Tyrg2 and TyP3 from the 
core and concomitant coil-to-helix transition in which residues 89 to 93 are incorporated into a5, 
thus lengthening it  by one turn. 

A, is 1100 A3 as determined by the program 
"putative active sites with spheres" (PASS) 
(33), whereas the largest pocket of drug-free 
QacR is under 400 A3 (Fig. 4, A and B). 
When PASS was used to search for potential 
ligand binding within the drug-removed 
QacR structure, the top two predicted binding 
sites, which have overlapping volumes, cor- 
respond to the centers of the Et and the R6G 
drug-binding pockets (Fig. 4A) (33). This 
computational analysis, therefore, provides 
additional unbiased support for the presence 
of two separate but potentially overlapping 
binding sites within a single pocket. In addi- 
tion to binding monovalent lipophilic cations, 
QacR also binds bivalent cationic lipophilic 

compounds, e.g., dequalinium (Dq). The 2.54 
A resolution structure of the QacR-Dq com- 
plex reveals that the two positively charged 
aminomethylquinolinium moieties bind the 
pockets defined as the R6G pocket and the Et 
pocket, while the decamethylene linker ad- 
justs to provide an optimal fit (Fig. 3C and 
Fig. 4A). In the R6G pocket, one quinolinium 
group is sandwiched between Trp6' and 
Tyr93, similar to R6G binding. However, un- 
like R6G, the positively charged nitrogen of 
this moiety (Fig. 1) is complemented by 
G1u5' and G ~ u ~ ~ .  In the Et pocket, the Dq 
contacts are functionally identical to those 
observed in the QacR-Et complex; the second 
quinolinium group is bound between Phe162' 
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Fig. 3. Multidrug recognition 
by QacR. For the sake of clar- 
ity, only key residues are 
shown (no solvent) including 
the acidic residues (colored 
red) that neutralize the posi- 
tive charges of each drug. The 
carbon, nitrogen, and oxygen 
atoms of the drugs are col- 
ored white, blue, and red, re- 
spectively. (A) QacR-R6C 
complex (B) QacR-Et complex. 
(C) QacR-Dq complex. (D) 
QacR-W complex (E) QacR- 
MC complex. (F) QacR-Be 
complex The distances be- 
tween the positively charged 
nitrogens of each drug and 
QacR acidic residues are: 
R6C [ 0 ~ Z ( C l u ~ ) - N l  (R6C), 
3.98 A]; Et: [0~Z(C lu '~~) -  
NZ(Et), 3.95 A]; Dq: 
[OEI(CIU~~-NZ(D~), 4.75 A; 
0&1(Cl~~)-N2(Dq), 4.93 A; 
and OEI ( C ~ U ' ~ ~ ) - N I  (Dq), 4.80 
4; CV: [0~1(Clu~)-N2(CV), 
3.96 A; OEZ(C~U'~~)-N~(W),  
3.85 A]; MC: [ O E ~ ( C ~ U ~ ~ ) -  
NZ(MC), 3.35 A; 02 C ~ U ' ~ ~ ) -  
N3 (MC), 3.60 &; Be: 
[OEI (Clu5q-N1 (Be), 5.64 A; 
OEI (CIU~)-NI  (Be), 4.93 A]. 

Fig. 4. The extended multisite binding pocket of QacR. (A) Superimposition of drug-binding pockets 
of the QacR-R6C, QacR-Et, and QacR-Dq complexes highlighting the multisite binding pocket of 
QacR. R6C, Et, and Dq are colored pink, orange, and yellow, respectively. The two top binding-site 
centers predicted from PASS (33) are depicted as blue balls and labeled ligand binding site 1 and 
2 (LBSI and LBSZ). (B) Ribbon diagram of the drug-bound QacR dimer looking down from the "top" 
of the dimer. The drug-bound subunit is colored dark blue and the other is cyan. The binding-site 
volume calculated from PASS with drugs removed is depicted as a transparent surface. Shown 
within this volume as sticks are the drugs from all structures where R6C is pink, Et is orange, Dq 
is light yellow, MC is green, CV is violet, and Be is dark yellow. Note the optimal fit of the drugs 
within the extended binding site. The helices in the drug-bound protomer are labeled. 

and Tyr103, and its positively charged nitro- 
gen is neutralized by Glu120 (Fig. 3C). The 
decamethylene linker is well ordered and 
makes multiple van der Waals contacts with 
the side chains of Leus4, Ile99, Met116, and 
Leu119. 

Unlike R6G, Et and Dq, the QacR inducer 
crystal violet (CV) (21) does not have a 
planar ring system (Fig. 1). Instead, this dye 
has a propeller-like geometry with dihedral 
angles between aryl groups and the central 
coordination plane of 27.7' (34). As a result, 

CV should not be able to sandwich into either 
the R6G or the Et binding pockets of QacR. 
The structure of the QacR-CV complex re- 
veals that, somewhat like Dq, CV binds in the 
overlapping region between the R6G and Et 
pockets such that its aryl groups interact with 
hydrophobic residues at the edges of each 
pocket (Fig. 3D). Specifically, the methyl 
groups of one dimethylaminophenyl moiety 
make hydrophobic interactions with Tyr93 
and Trp61 near the R6G binding site, whereas 
its phenyl group stacks against Tyr'23. The 

methyl and phenyl groups of 'a second di- 
methylaminophenyl moiety are within van 
der Waals distance of Tyr103 and Phe16'', i.e., 
near the Et pocket. The CV methyl groups 
also engage in hydrophobic interactions with 
Ile1O0 and IleloO'. Finally, the third dimethyl- 
aminophenyl moiety is anchored to a pocket 
between a7  and a8  where it contacts AlalS3, 
Glul'O, AsnlS4, and AsnlS7. This unique 
binding mode allows the dissipation of the 
delocalized positive charge of CV (Fig. 1) via 
interactions between two of its amino groups 
and glutamates, Glu90 and GlulZ0. 

From the manner in which the delocalized 
charge of CV is neutralized by Glu90 and 
Glul lZ0, we predicted that replacement of the 
third dimethyl amino group with a hydrogen, 
as found in malachite green (MG), although 
removing several hydrophobic . contacts, 
should not prevent binding. Indeed, the 
QacR-MG structure demonstrates that this 
dye binds in essentially the same pocket as 
CV, and its positive charge is similarly com- 
plemented as in CV (Fig. 3E). However, su- 
perimposition of the QacR CV and MG com- 
plexes reveals a slight shift in the position of 
one drug relative to the other, allowing each 
to make optimal van der Waals contacts with 
QacR residues, again underscoring the versa- 
tility of the pocket. Although MG binds 
QacR, whether it is a physiologically relevant 
inducer of qacA is unknown. 

The plant alkaloid, berberine (Be), is a 
substrate of QacA that induces QacR and is a 
potent antimicrobial in the absence of MDR 
transporters (35, 36). Be binds within the 
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Table 1. QacR-drug complex data collection and refinement. 

Drug 

Parameter 
R6C 

(remote/seleno) 
Et Dq CV MG Be 

Data collection statistics 
Temperature (K) 100 100 100 100 296 296 
Space group 	 P4,2,2 P4,2,2 P42212 P42212 P42212 P4,2,2 

Cell constants (A) 	 a=172.3 a=172.0 a=172.0 a=172.9 a=174.2 a=174.3 
b=172.3 b=172.0 b=172.0 b=172.9 b=174.2 b=174.3 
c=95.0 c=95.0 c=94.6 c=95.1 c=96.3 ~ ~ 9 6 . 3  

Resolution (A) 2.84 2.97 2.54 2.85 2.95 2.98 
Com~leteness(%I 99.8 75.0 99.6 100.0 86.8 92.7, , 
Overall R,,(%)' 4.9 4.5 5.8 6.4 8.9 10.5 
Multiplicity 6.9 6.0 7.1 9.9 4.0 4.1 
Overall I/u(l) 10.5 12.0 9.0 8.5 11.0 10.2 
Total reflections (#) 236,668 130,105 391,013 340,448 81,820 141,045 
Unique reflections (#) 34,367 22,060 55,291 34,304 26,915 32,199 
High res. shell (A) 2.91-2.84 3.15-2.97 2.61-2.54 2.92-2.85 3.10-2.95 3.05-2.98 

R,,(%) 25.9 22.9 34.2 44.9 27.8 25.2 
I/u(I) 2.9 3.0 2.1 1.7 2.4 2.2 

Refinement statistics 
Resolution range (A) 

Low 77.06 83.16 86.00 63.97 64.60 84.29 
High 2.84 2.97 2.54 2.85 2.95 2.98 

Rwork(%)t 22.9 23.8 20.9 22.8 23.7 23.6 
Rrree(%): 27.2 28.9 25.5 28.6 28.1 28.4 
rmsd 

Bond angles (") 1.30 1.31 1.61 1.44 1.65 1.60 

Bond lengths (A) 0.009 0.009 0.014 0.01 1 0.015 0.014 

B values (A2) 1.59 1.55 2.88 2.43 1.43 1.43 

Solvent 66/23 51/17 137124 68/24 7/22 7/22 


[(#), waterlsulfate] 
Ramachandran analysis 

Most favored (%) 89.9 82.9 90.9 87.4 84.8 85.9 
Additional allowed (%) 9.7 15.9 7.6 11.9 14.1 12.6 
Generously allowed (%) 0.0 0.7 0.9 0.4 0.4 0.9 
Disallowed (%) 0.4 0.6 0.7 0.4 0.7 0.7 

*RSym = 221 lhkl - Ihkl(j)I/Plhkl, where Ihkl(j) is observed intensity and lhkl is the final average value of intensity. 
R = F - 1 F I 2  1 F IR,,,, = ZIIF,,,I - I F,,,,IIIP I F,,,I, where all reflections belong to a test set of 10% 
data randomly selected in CNS. 

R6G pocket of QacR (Fig. 3F), and like R6G, served within its large binding pocket, and 
the Be anthracene ring system is sandwiched stabilized by a different complement of polar 
between Trp6' and Tyr93 while the 1,3-dioxa- residues (21). In addition, the recent structure 
6a-azoniaindeno group stacks with TyrlZ3 of the E. coli MsbA, a homolog of the multi- 
and is anchored by hydrogen bonds from its drug ABC transporters, revealed a large pu- 
1,3 oxygens to AS^'^'. At the other end of the tative ligand binding cavity lined by polar 
ring system, the two 8,9-dimethoxy groups residues (37). Finally, the combined QacR- 
extend into a solvent exposed region, which drug structures reveal several, separate, but 
is formed when the coil-to-helix transitional linked binding sites within one extended and 
switch is thrown. Finally, the positive charge, thus, multifaceted drug binding pocket. This 
centered on the Be N1 nitrogen (Fig. I), is is likely to be a crucial feature in multidrug 
surrounded by the side chains of G1u5' and recognition. Indeed, the use of such a multi- 
Glu5' in a manner analogous to that observed faceted pocket is consistent with accumulat- 
for one of the aminomethylquinolinium nitro- ing data indicating the presence of multiple 
gens in the QacR-Dq structure. binding sites in both secondary and ATP- 

In conclusion, QacR exhibits an expan- dependent multidrug transporters (13-18). 
sive drug-binding site with four charge-neu- 
tralizing residues that line and surround the 
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to 2.84 A. The model has excellent stereochemistry (44) 
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Structural Basis for Selective 
Recognition of Oligosaccharides 

by DC-SIGN and DC-SIGNR 
Hadar Feinberg,' Daniel A. Mitchell,' Kurt Drickamer,' 

William I. weis'' 

Dendritic cell specific intracellular adhesion molecult+3 (ICAM-3) grabbing 
nonintegrin (DC-SIGN), a C-type lectin present on the surface of dendritic cells, 
mediates the initial interaction of dendritic cells with T cells by binding to 
ICAM-3. DC-SIGN and DC-SIGNR, a related receptor found on the endothelium 
of liver sinusoids, placental capillaries, and lymph nodes, bind to oligosaccha- 
rides that are present on the envelope of human immunodeficiency virus (HIV), 
an interaction that strongly promotes viral infection of T cells. Crystal struc- 
tures of carbohydrate-recognition domains of DC-SIGN and of DC-SIGNR bound 
to oligosaccharide, in combination with binding studies, reveal that these 
receptors selectively recognize endogenous high-mannose oligosaccharides and 
may represent a new avenue for developing HIV prophylactics. 

Initiation of a primary immune response re- mediated by the binding of the T cell surface 

quires the interaction of resting T cells with receptor ICAM-3 to a dendritic cell surface 

antigen-presenting dendritic cells (I). Initial receptor denoted DC-SIGN (2). DC-SIGN 

interaction of T cells with dendritic cells is may also mediate rolling of dendritic cells 


Table 1. Data collection and refinement statistics. Unit cell parameters are from postrefinement in 

SCALEPACK (20). Ramachandran plot regions are defined in PROCHECK (27). 


DC-SIGN 	 DC-SIGNR 

Space group 	 c2 p212,21 
Unit cell parameters 


a ( 4  106.8 50.2 

b (A) 148.2 57.0 

c (A) 113.0 89.3 

I3 ("1 91.0 


Resolution range (A) 50 to 2.5 (2.59 to 2.50) 50 to 1.9 (1.97 to 1.90) 

Measured reflections 250720 843434 

Unique reflections 59357 19033 

Completeness (%) 97.8(99.3) 92.0(83.6) 

Rsym* (%I 5.3(26.6) 7.2(13.1) 


Rcvstt(%I 	 21.4 19.4 
R h e t  (%I 	 25.8 24.0 
Rmsd from ideality 


Bonds (A) 0.0067 0.0049 

Angles (") 1.3 1.2 


Ramachandran plot 

% in most favored 87.2 89.0 

% in allowed 11.7 10.5 

% generous regions 1.1 0.4 

% disallowed 0.0 0.0 


Average B-factor (A2) 

Main chain 47.3 24.0 

Side chain 48.7 26.2 

Carbohydrate 43.2 35.5 

Ca2+ 40.8 17.1 

Water molecules 41.9 32.6 


*R,  ,= P,P,(lli(h)l - I(l(h))/)/P,H,l,(h) where Ii(h) = observed intensity, and (/(h)) = mean intensity obtained from 

muhiple measurements. tR,,, and R,,,, = Xllf, 1 - I F,II/~ I F, 1 ,  where IF, I = observed structure factor amplitude 

and IF,^ = calculated structur<tactor amgitude for the working and test sets, respectively. 
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