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series of coronal sections. The sections were 
fmt scanned with conventional epifluorescence 
microscopy with a dual-band filter set, which 
allowed sikultaneous viewing of the fluores- 
cence signals of BrdU and neuronal markers. 
All cellssuspected of being double-labeled for 
BrdU and a neuronal marker were examined in 
detail with threedimensional confocal analysis. 

David R. Kornack't2 and Pasko Rakicl* BrdU-labeled nuclei were observed in the 
neocortex of each monkey, irrespective of the 

A recent assertion that new neurons are continually added to the neocortex of particular injection schedule. The animals 
adult macaque monkeys has profound implications for understanding the cel- perfused 10 and 23 days after the final BrdU 
lular mechanisms of higher cognitive functions. Here we searched for neuro- injection were most informative because 
genesis in adult macaques by using immunofluorescent triple labeling for the these survival times correspond to the time 
DNA-replication indicator, bromodeoxyuridine (BrdU), and neuronal and glial point when adult-generated neurons are re- 
cell markers. Although numerous BrdU-labeled cells were distributed through- portedly present in greatest numbers in the 
out the cerebral wall, including the neocortex, these were identified as non- cortex before their demise. We found that 
neuronal cells; evidence for newly generated neurons was limited to the hip- many BrdU-labeled cells within the neocor- 
pocampus and olfactory bulb. Thus, our results do not substantiate the claim tex were distributed as "doublets" and were 
of neurogenesis in normal adult primate neocortex. the likely daughter cells of a mitotic event 

within the neocortex (Fig. 1). The phenotype 
Higher cognitive functions in primates, in- in 2 weeks after their generation, the new of BrdU-labeled cells in the cortex was ex- 
cluding humans, depend on the appropriate neurons were reported to extend axons to amined with triple-label immunofluorescence 
number, organization, and connectivity of other cortical areas (22) and then die within histochemistry for BrdU, NeuN, and GFAP. 
neurons in the association areas of the neo- the next 7 weeks (23, 24). Although we surveyed more than 1000 BrdU- 
cortex (1,2). Studies with 3H-thymidine (3H- Because of the considerable conceptual and labeled cells in the prefrontal neocortex in 
TdR) autoradiography, which labels DNA in biomedical implications of this claim, it is es- each monkey, in no instance did we find a 
dividing cells and their progeny, have indi- sential to validate the reliability and robustness BrdU-labeled cell that was colabeled with 
cated that neocortical neurons are generated of this putative phenomenon. Accordingly, we NeuN. This result differs markedly from the 
before or shortly after birth in all species examined the proliferation and phenotypic dif- previous study (22), which claimed that 1 to 
examined (3-10). In macaque monkeys, cor- ferentiation of cells in the cerebrum of adult 2 weeks after BrdU injections, 38 to 52% of 
tical neurogenesis occurs in a strict inside-to- macaque monkeys at various times after BrdU the BrdU-labeled cells in the principal sulcus 
outside (deep to superficial) laminar order injections by using triple-label immunofluores- colabeled for NeuN. Given the number of 
before birth (7), whereas gliogenesis-in ma- cence for BrdU, glial fibrillary acidic protein BrdU-labeled cells that we surveyed in the 
caques as in other species-continues post- (GFAP, a marker for astrocytes), and either principal sulcus alone, the probability of 
natally (1 1-13). NeuN (a marker for adult neurons) or class 111 missing 38 to 52% [or even the revised, lower 

More recently, the generation of cells in (3-tubulin (Tull, a marker for immature neu- estimate of 25% (24)] of the total BrdU- 
the nervous system has been studied with the rons) (25). We surveyed the prefiontal cortex- labeled cell population as double-labeled 
thymidine analog, 5-bromodeoxyuridine including the principal sulcus, where the major- neurons is infinitesimally small. This discrep- 
(BrdU), which also labels DNA during cell ity of adult-generated neurons were reported- ancy may be due to differences in histological 
division (14). This method has been com- by examining every third section in a sequential analysis [e.g., (26)] or other artifacts (27,28). 
bined with cell-type-specific immunomark- 
ers and confocal microscopic imaging to de- 
tect newly generated neurons in the adult Fig. 1. Confocal microscopic 
hippocampus and olfactory bulb of rodents images of BrdU-labeled cells in 

(15-1 7) and primates (18-21). With this ap- the frontal cortex of adult ma- 
caque monkeys. BrdU-labeled 

proach, it was recently reported that consid- cells in cortex were often dis- 
erable numbers of new neurons are continu- tributed as "doublets" (ar- 
ously added to neocortical association areas rows), as illustrated by these 
during adulthood in macaque monkeys (22). examples in cingulate cortex 
The report further indicated that these neu- (A to C) and prefrontal cortex 

rons are produced in the subventricular zone (D) 10 days [(A) to (C)] and 
32 days (D) after BrdU injec- 

(SVZ) of the lateral cerebral ventricles and tions. BrdU-labeled nuclei 
then migrate in streams through the subcorti- (green) are closely associated 
cal white matter to the prefrontal, posterior with the perikarya of NeuN- 
parietal and inferior temporal neocortex. positive neurons (red) but are 
Moreover, after reaching the neocortex with- not immunopositive for 

NeuN, indicating a nonneu- 
ronal phenotype. CFAP im- 

'Department of Neurobiology. Yale University School munoreactivity (blue) indi- 
of Medicine. New Haven, CT 06510. USA. ZCenter for cates the presence of astro- 
Aging and Developmental Biology. Department of cytes. None of the neurons 
Neurobiology and Anatomy, University of Rochester were labeled with BrdU. Scale 
Medical Center. Rochester. NY 14642. USA. bar, 20 pm for (A) to (D). 

*To whom correspondence should be addressed. E- 
mail: pasko.rakic@yale.edu 

www.sciencemag.org SCIENCE VOL 294 7 DECEMBER 2001 



For example, upon initial inspection of our 
material, some BrdU-labeled nuclei appeared 
to belong to cortical neurons, which would be 
indicative of adult-generated neurons. How- 
ever, in such cases, detailed confocal z-series 
analyses (i.e., examining sequential optical 
sections at intervals of 0.8 pm in the z axis) 
revealed that these BrdU-labeled nuclei actu- 
ally belonged to cells that were closely ap- 
posed to neurons but were themselves irnmu- 
nonegative for NeuN (Fig. 2). The nuclei of 
NeuN-positive neurons were invariably im- 
munonegative for BrdU (Fig. 2). Thus, the 
BrdU-labeled nuclei in these initially ambig- 
uous cases appear to belong to newly gener- 
ated satellite glial cells, which have been 
previously described in the neocortex of adult 
monkeys with both 3H-TdR and BrdU meth- 
ods (29-31) as well as in the cortex of other 
mammals (11, 12, 26, 32). 

Gould et al. have proposed that most of the 
putative new neurons in the monkey neocortex 
die within 9 weeks after being generated and 
that the previous 3H-TdR autoradiography stud- 
ies failed to detect them because of the longer 
survival periods used in these studies (22-24). 
However, in the present analysis, new cortical 
neurons were not detected even in the animals 
with short survival intervals. Even if. because 
of the sampling procedure or technical limita- 
tions. we have missed some BrdU-labeled neu- 
rons, their number would be exceedingly small. 
It would also be essential to exclude BrdU 
labeling resulting from DNA synthesis in re- 
sponse to cell damage, abortive mitoses, or 
initial steps in cell death, all of which could 
occur without mitotic division (33-35), before 
concluding that the labeled cells are newly gen- 
erated neurons. Our results are in harmony with 
previous 3H-TdR autoradiographic studies in 
both primate and nonprimate species, indicating 
that neurogenesis of the neocortex is normally 
confined to developmental periods (3-10, 12, 
13). Consistent with our findings, a recent study 
with immunofluorescent double-labeling of 
cortical cells with BrdU and NeuN in adult 
mice also failed to detect neurogenesis under 
normal conditions (36). 

Finally, the negative findings in the present 
study cannot be attributed to inadequate histo- 
logical processing because we could positively 
identify adult-generated neurons colabeled for 
BrdU and NeuN in the hippocampal dentate 
gyms and olfactory bulb in the very animals 
examined for cortical neurogenesis (Fig. 3) (20, 
21). Moreover, we could identify immature 
Brdu~TuTl double-stained neuroblasts in the 
SVZ and olfactory tract that migrate to the 
olfactory bulb (see Fig. 3) (21) as they do in 
other mammalian species (1 7,37,38). Howev- 
er, we did not detect any migrating neuroblasts 
entering the overlying subcortical white matter, 
by using double-staining for BrdU and TuTl 
(39). We did observe BrdU-labeled cells in the 
subcortical white matter, but these were not 

R E S E A R C H  A R T I C L E S  

Fig. 2. Images of cells in the 
adult macaque monkey pre- 
frontal cortex that appear to 
be double-labeled for BrdU 
and NeuN are instead re- 
solved to be two closely ap- 
posed single-labeled cells. 
(A) A NeuN-positive neuron 
(red) appeared to be cola- 
beled with BrdU (green) in a 
merged image. However, a z- 
series analysis (B to E) re- 
vealed that the BrdU-labeled 
nucleus (arrow) was located 
in a different focal plane 
than the NeuN-positive neu- 
ronal cell body. The BrdU- 
positive nucleus is visible in 
(B) and (C), and the NeuN- 
positive nucleus and nucleo- 
lus are visible in (D) and (E) 
(arrowhead), demonstrating 
that the neuron is not BrdU- 
labeled. (F to J) An example 
of a pyramidal neuron that 
appears to be BrdU-labeled 
in sections [(F) to (H), arrow] 
is shown to have its nucleus 
and nucleolus in a different 
focal plane [(I) and (j), arrow- 
head]. These BrdU-labeled 
nuclei apparently belong to 
adult-generated satellite glia, 
which typically associate 
with neuronal perikarya (see 
Fig. 1). Astrocytes are indi- 
cated by CFAP immunoreac- 
tivity (blue). Scale ban, 20 
Pm. 

arrayed in the migratory stream from the SVZ 
to the prefrontal principal sulcus as dia- 
grammed in Fig. 4 in Gould et al. (22). Rather, 
in our material, these cells were distributed 
throughout the white matter along blood vessels 
or along myelinated fiber tracts, typical of new- 
ly generated endothelial cells and oligodendro- 
cytes, respectively, which have also been ob- 

served in numerous previous studies (11-13, 
28-32,40-46). The aligned rows of cells iden- 
tified as chains of migratory neurons in Fig. 5D 
of Gould et al. (22) and Fig. 4C of their subse- 
quent paper (24) appear to be endothelial cells 
lining a longitudinally cut capillary. The cyto- 
logical features used previously to identify 
BrdU-labeled cells as migrating neurons in the 
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Persistent Solar Influence on those rather dramatic events within a stable 
interglacial has been difficult to explain. Ear- -

North Atlantic Climate During lier work (3) suggested that a low-resolution 
record of North Atlantic drift ice in the early 
Holocene may have been linked to the energy 

the Holocene output of the Sun. The likelihood of any such 
strong climate response to solar variability 

Gerard Bond,'* Bernd ~romer,' Juerg Beer,3 has long been debated because the magnitude 
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A prominent feature of the North Atlantic's Labrador Seas were repeatedly advected genossische Technische Hochschule Hoenggerberg, 
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Fig. 1. Map of coring sites described in the text that provide the basis for 
inferring sources and transport routes of ice carrying the petrologic tracers. 84"~ 

Dashed blue lines: subpolar cyclonic circulation. The main frontal boundaries 
are labeled in blue. Red dots are core-top measurements of all tracers. Areas 
enclosed by shading indicate core tops with > lo% of tracers as keyed by 
colors [red: > lo% hematite-stained grains (HSC); yellow: > lo% Icelandic 
glass (IC); blue: > lo% detrital carbonate (DC)]. Documentation for core-top 
percentages of HSC and IC are from (2); red numbers next t o  core-top 
locations are percentages of DC in core tops. Colored arrows indicate 
inferred direction of transport of tracer-bearing drift ice. Gray lines are mean 
(1900 t o  1992) ocean-surface temperatures from LEVITUS94 (52) for spring 
when iceberg discharge into the North Atlantic reaches a maximum. EIC: 
East lceland Current; ECC: East Greenland Current; LC: Labrador Current. wN 
VM28-14: 64O47'N, 2g034'W, 1855-m water depth; VM29-191: 54'16'N, 
16O47'W, 2370-m water depth; VM23-81: 5401SfN, 16°50'W, 2393-m 
water depth; KN158-4 MC52: 5S028'N, 14O43'W, 2172-m water depth; 
KN158-4 MC21, KN158-4 CCC22: 44"18'N, 46"16'W, 3958-m water 
depth; and EW9303 JPC37: 43'58'N, 4602SfW, 3980-m water depth. Pet- 
rologic analyses of more than 120 core tops demonstrates that most 
tracer-bearing ice today circulates in the cooler waters north and west of the 
subpolar front. Lower tracer percentages to  the south and east are consistent 
with observational evidence that icebergs there come mainly from south and 
west Greenland where tracer-bearing rock types are rare, if present at all. 
Increases in DC off Newfoundland, therefore, reflect southward shifts of the 
cooler Labrador Sea surface water and carbonate-bearing drift ice. Peak 44'N 

percentages of HSC and IC off Newfoundland rarely reach the correspond- 
ing peak values of those two tracers in the eastern North Atlantic (MC52- 
VM29-191) (Fig. 2). That rules out transport of HSC and IC through the East 80°w 4oQw oQ 

Greenland-Labrador Sea current system at times of peak drift-ice transport. 
The eastern North Atlantic drift-ice records, therefore, require that at times of peak tracer percentages, ice-bearing surface waters from north of lceland were 
advected southeastward toward the coring site. That was accompanied by cooler ocean-surface temperatures (7 )  and, by analogy with transport mechanisms 
of modern drift ice (53),must have been aided by northerly or northeasterly surface winds in the Nordic Seas and eastern subpolar North Atlantic. The 
concentrations of IRD (lithic grains > I50 CLm), although small, covary with the petrologic tracers, and peak percentages reflect true increases in the tracer 
concentrations rather than dilution by other grain types. 
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