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Matching Spiracle Opening to 
Metabolic Need During Flight in 

Drosophila 
Fritz-OLaf Lehmann 

The respiratory exchange system of insects must maximize the flux of respi- 
ratory gases through the spiracles of the tracheal system while minimizing 
water loss. This trade-off between gas exchange and water loss becomes crucial 
when locomotor activity is increased during flight and metabolic needs are 
greatest. Insects that keep their spiracles mostly closed during flight reduce 
water loss but limit the flux of oxygen and carbon dioxide into and out of the 
tracheal system and thus attenuate locomotor performance. Insects that keep 
their spiracles completely open allow maximum gas exchange but face desic- 
cation stress more quickly. Experiments in which water vapor was used as a 
tracer gas t o  track changes in the conductance of the respiratory system 
indicated that flying fruit flies minimize potential water loss by matching the 
area of the open spiracles t o  their gas exchange required for metabolic needs. 
This behavior maintained approximately constant pressure for carbon dioxide 
(1.35 kilopascals) and oxygen (19.9 kilopascals) within the tracheal system 
while reducing respirometric water loss by up t o  23% compared with a strategy 
in which the spiracles are held wide open during flight. The adaptive spiracle- 
closing behavior in fruit flies has general implications for the ecology of flying 
insects because it shows how these animals may cope with environmental 
challenges during high locomotor performance. 

The increased power output required for flap- flight is not constant, however, but varies as 
ping flight places special demands and con- an animal alters force production to carry 
straints on the respiratory system of flying loads or perform flight maneuvers ( 6 8 ) .  
insects (I). On the one hand, the respiratory In a diffusion-based respiratory system 
system must permit the flux of oxygen (0,) (9), the rate with which a gas is exchanged 
and carbon dioxide (CO,) to and from flight depends on two factors: the partial-pressure 
muscles. On the other hand, the structures 
that permit respiratory exchange leave an an- 
imal susceptible to the loss of water vapor, 

A B 

thus increasing the danger of desiccation. The 
spiracles that occlude the outer openings of 
the insect tracheal system function as barriers 
that control the gas exchange between the 
network of air sacs, tracheas, and tracheoles 
and the outer environment. The terminal in- 
ternal endings of the tracheal system, the 
tracheoles, are thought to be water filled, 
establishing a pressure that continuously 
drives water vapor out of the insect body 
when spiracles open for gas exchange (2-5). 
The potential threat of desiccation is greatest 
during flight, when the spiracles must remain 
open to sustain increased metabolic activity 
of the wing muscles. The metabolic cost of 
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gradient between ambient and tracheal gas, 
and the cross-sectional area for diffusive flux 
(the area of the spiracle opening). The driving 
force on water vapor is assumed to be con- 
stant, so the flux of water depends only on the 
size of spiracle opening (10). The situation 
for the respiratory gases (CO, and 0,) is 
more complex, because the internal tracheal 
partial pressures might vary with metabolic 
rate. To limit water loss, an insect ought to 
match spiracle opening with its instantaneous 
metabolic demands. To test this hypothesis, I 
developed a method for indirectly measuring 
spiracle-opening area in tethered fruit flies, 
Drosophila melanogaster, flying within a re- 
spirometric chamber of a virtual-reality flight 
arena and estimated the concomitant changes 
in partial pressure of tracheal gases from 
simultaneous measurements of total flight 
force production, CO, release, and water-loss 
rate (11, 12). The experiments were per- 
formed under visual closed-loop feedback 
conditions, in which the fly itself controls the 
angular velocity of a vertical dark stripe dis- 
played in the arena by changing the stroke 
amplitude of its two wings during flight. 
Under these conditions, a h i t  fly attempts to 
stabilize the azimuth position of the dark 
stripe in the frontal region of its visual field. 
While the animal actively controlled the dark 
bar, a superimposed background pattern of 
diagonal stripes was oscillated vertically 
around the animal. 

In the h i t  fly, 4 thoracic and 14 abdom- 
inal spiracles control the diffusive flux into 
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Fig. 1. Location of spiracle openings, and spiracle closing and opening behavior during flight, in the 
fruit fly Drosophila. (A) spl, mesothoracic spiracle; sp2, metathoracic spiracle; sp3 to sp9, 
abdominal spiracles. (B) The oval thoracic spiracular openings are bordered by a thick sclerite and 
protected with hairs. Narrow flexible spiracular lids cover the tracheal entrance. Spiracles open by 
the elasticity of their cuticular structures and are held actively closed by the spiracle-closing muscle 
(32). Images are taken from D. virilis. (C) Closing and opening behavior of the right mesothoracic 
spiracle in D. mimica Hardy (3.06 mg wet body mass) during tethered flight and rest (33). 
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and out of the tracheal system (Fig. 1, A and of all spiracles simultaneously during flight sure measurements of respiratory gases. 1 
B). Although it is possible to record directly in smaller species of Drosophila. The beating thus derived the average opening behavior of 
the mesothoracic spiracle opening area in haltere, moreover, partly blocks the view on all 18 spiracles and the average partial pres- 
flight of the large Hawaiian species D. the opening of the large metathoracic spira- sure for tracheal CO, and 0, during flight by 
mimica by video microscopy (Fig. lC), it is cle. In addition, the small tracheole endings estimating the conductance for tracheal gas 
difficult to monitor the opening and closing in fruit flies are inaccessible for direct pres- flux from the measured water-loss rates of the 

fly. 
The tracheal partial pressure of CO, and 

0, may be expressed by using a geometric 
model for tracheal diffusion (13) in which the 
respirometric flux of a gas through the spi- 
racles, M, is the product of conductance for 
diffusion, G, and the driving force given by 
the difference of tracheal partial pressure, P,., 
and partial pressure in the ambient air, PA: 

During flight, the conductance for CO, and 
0, is expected to vary with the changes in the 
open area of the spiracles. If certain assump- 
tions are met, mean conductance for respiro- 
metric gas flux within a short period of time 
(100 ms) can be derived from the conduc- 
tance of water vapor because both gases fol- 
low the same diffusive path. Assuming that 
the water-filled tracheole ends establish a 
constant driving force, conductance for water 
was derived from the measured water flux 
according to Eq. 1 (14). The functional ge- 
ometry of the tracheal system is given by the 
relation 

in which A, is the representative cross-sec- 
tional area and L, the characteristic length of 
the tracheal system. D is the effective diffu- 

Fig. 2. Alterations in flight performance and concomitant changes in respiratory behavior of a single 
D. melanogaster fruit fly. (A) Representative recording showing water-loss rate (blue) and CO 
release (red) while the tethered animal varied its flight force (black) in response to the vertical 
motion of a stripe pattern (green) displayed in the flight arena. Negative angular velocities of the 
visual stimulus indicate that the stripe pattern moves downwards (gray areas). Both respirometric 
values are given in units that take into account the body mass of the fly. (B) Spiracle-opening 
behavior (green) and tracheal partial pressure for CO, (red) in flying flies were determined with a 
geometric model for tracheal diffusion. Assuming that spiracles are held continuously open during 
flight, tracheal partial pressure would vary in-phase with flight-power requirements (blue). 

sion coefficidnt of the gas, and p is the 
capacitance coefficient. Given these geomet- 
ric parameters, the conductance for CO, and 
0, within the tracheal system may then be 
estimated by replacing D and P in Eq. 2 with 
values appropriate for CO, and 0, (15, 16). 
Assuming that maximum tracheal conduc- 
tance matches the need for respiratory gas 
exchange at maximum locomotor perfor- 
mance, the total opening area of all spiracles, 
A,, can be approximated by setting maximum 
total spiracle area, A,,,, of 5949 pm2 (1 7) 
equal to the extreme 1% of all values of A, 
within a flight sequence in which metabolic 
needs are the greatest. Overall opening area 
in the flying insect may be eventually calcu- 
lated by 

As = AT L,'Ama(A-r L,'),:, (3) 
Tethered flying fruit flies typically modulated 
their total flight force vroduction in resvonse 

u 

to the vertical oscillating diagonal stripe pat- 
tern in an attempt to minimize the slip of the 
retinal image (Fig. 2A, green and black trac- 
es). In freely flying flies this optomotor be- 
havior would stabilize the vertical position of 
the animal in space. The modulation of flight 
force was accompanied by regular changes of 
both CO, release and respiratory water loss 
(Fig. 2A, red and blue traces). While the fly 

www.sciencemag.org SCIENCE VOL 294 30 NOVEMBER 2001 



R E P O R T S  

was responding to the motion of the moving 
pattern, CO, flux varied by 35 + 11% of its 
mean value, which reflected the changes in 
energy expenditures during flight (Table 1). 
The modulation of water loss rate by 26 -+ 
14% indicates either that (i) Drosophila does 
not hold its spiracles continuously open dur- 
ing flight as reported in previous studies on 
large beetles (18); (ii) an increase in strain 
amplitude of the asynchronous flight power 
muscles intensifies thoracic autoventilation 
and thus enhances water loss in proportion to 
flight force production; or (iii) changes in 

Freestream velocity (m s-l) 

Fig. 3. Total water-loss rate (0) and cuticle 
water loss (@) in unrestrained D. melanogaster 
plotted against free-stream velocity of the am- 
bient air. A total of 114 flies were exposed for 
4 hours to different flow velocities of dry air 
within a small respirometric chamber in which 
water-loss rate and CO, release were simulta- 
neously measured by flow-through respirome- 
try. Total water-loss rate was determined from 
weight loss. To yield cuticle water-loss rates, 
spikes of water loss due to discontinuous gas 
exchange, droplets, and proboscis extensions 
were estimated by flow-through respirometry 
and then subtracted from total loss. The gray 
areas represent the expected ranges of induced 
mean air velocity produced by the beating 
wings during flight (A) near the stroke plane 
and (0) in the "far" wake behind the animal, 
while the fly modulates its aerodynamic forces 
between minimum and maximum values (19). 

wing kinematics modulate induced air-flow 
velocity (19), which in turn alters cuticle 
water-loss rate due to changes in the bound- 
ary-layer condition around the animal. Exper- 
iments in which cuticle water-loss rates were 
determined in unrestrained flies, however, 
reveal that mean cuticle water-loss rate is 
relatively low (6.4 + 1.4 yl g-' body mass 
hour-') and did not significantly increase 
with increasing flow velocity of the ambient 
air over a wide range of different values 
(linear regression, t test on slope, P > 0.2) 
(Fig. 3). It thus seems unlikely that changes 
of water-loss rate during flight are due to 
alterations in cuticle water loss. The same 
holds for possjble alterations in thoracic au- 
toventilation of the tracheal system because 
the oscillations in length of the thoracic box 
in Drosophila range only between 2 and 5% 
throughout a complete contraction-extension 
cycle of the flight muscles (20). Moreover, in 
small insects such as h i t  flies, thoracic au- 
toventilation and tracheal ventilation due to 
the Bernoulli effect (18) are thought to be 
greatly attenuated by the low Reynolds num- 
ber for tracheal air flow (21). 

Instead, in response to a drop in flight 
power requirements, h i t  flies appear to ac- 
tively reduce average opening area of all 18 
spiracles by up to 77 + 11% of their maxi- 
mum area. ~t a flight force that is equal to 
body weight, the flux of water is reduced by 
11.6 2 5.6% or 12.1 2 5.8 pl g-' body mass 
hour-' compared with the maximum value. 
Although the fly is modulating flight force 
production by 88 + 17%, tracheal partial 
pressure for CO, and 0, as calculated from 
Eq. 1 appear not to be correlated with flight 
force production or metabolic rate, yielding 
means of 1.35 + 0.16 and 19.9 + 0.16 kPa, 
respectively (Fig. 2, A and B). These results 
are consistent with the hypothesis that Dro- 
sophila limits water loss during flight by 
actively matching the extent of spiracle open- 
ing to its metabolic needs (22,23). Moreover, 
the high partial pressure for tracheal oxygen 

Table 1. Alterations in flight performance, gas-exchange rates, spiracle activity, and partial pressure of 
CO, and 0, with maximal and minimal power output. Modulation was defined as the ratio between the 
difference and half the sum of maximum and minimum performance. Force, total flight force production; 
PCO,, flight-specific flux of CO, through spiracles; V*H,O, flight-specific rate of water loss; As, total 
spiracle opening area; PT,co2, tracheal partial pressure for CO,; Pp,co2, predicted tracheal partial pressure 
for CO, based on the assumption that the spiracles are held continuously open during flight; and P,,,, 
partial pressure for tracheal 0,. The data were collected from 13 females. Two flight sequences were 
typically recorded from each animal, representing a mean flight time of 13 2 6 min. Mean body mass of 
the animals = 1.05 2 0.13 mg. ALL values shown are the means 2 SD. 

Force V*CO, V*H,O AS p~.~02 PPCO 
(pN) (ml g-' hour-') (pl g-' hour-') (pmZ) (kPa) (kbaf ($3 

Maximum performance 
13.0 2 1.7 39 4.2 104 2 16 5949 1.4 2 0.2 1.4 2 0.2 19.8 2 0.2 

Minimum performance 
5.1 2 1.3 Z7 3.4 81 2 18 4606 2 648 1.3 C 0.2 1.0 2 0.2 19.9 2 0.2 

Modulation (Oh) 
88217 35211 26 2 14 26214 1127.7 35211 0.620.3 

strongly supports the assumption that diffu- 
sion alone can account for gas exchange dur- 
ing flight in h i t  flies (24). 

In contrast to findings in other insects, this 
study shows that fruit flies appear to control the 
diffusive flux for respiratory gases through their 
spiracles by modulating the opening area of the 
spiracles. This modulation in mean cross-sec- 
tional area of the diffusive path results in nearly 
constant mean partial pressure for CO, and 0, 
in the tracheal system, even though metabolic 
demands vary substantially during flight. Al- 
though this finding may not explain the 
mechanism whereby each spiracle contrib- 
utes to overall tracheal conductance during 
flight (25), it demonstrates how small insects 
may cope with environmental challenges dur- 
ing increased locomotor performance. By 
whatever mechanism, in the diffusion-based 
respiratory system of Drosophila, the adap- 
tive spiracle-closing behavior should lower 
the risk of desiccation for animals flying 
under dry environmental conditions. 
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We describe a method, based on single-molecule imaging, that allows the 
real-time visualization of the infection pathway of single viruses in living cells, 
each labeled with only one fluorescent dye molecule. The tracking of single 
viruses removes ensemble averaging. Diffusion trajectories with high spatial 
and time resolution show various modes of motion of adeno-associated viruses 
(AAV) during their infection pathway into living HeLa cells: (i) consecutive virus 
touching at the cell surface and fast endocytosis; (ii) free and anomalous 
diffusion of the endosome and the virus in the cytoplasm and the nucleus; and 
(iii) directed motion by motor proteins in the cytoplasm and in nuclear tubular 
structures. The real-time visualization of the infection pathway of single AAVs 
shows a much faster infection than was generally observed so far. 

Single-molecule detection techniques have 
been developed for imaging and for spectro- 
scopic characterization of individual fluores- 
cent molecules (1-3). Within the last years, 
these techmques have been increasingly applied 
to biological topics (4, 5). By overcoming the 
problem of ensemble averaging, these tech- 
niques enabled questions in molecular biology 
to be solved, which hitherto could not be an- 
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swered by conventional ensemble measure-
ments (6-8).Single-molecule imaging has pre- 
viously been applied to study the diffusional 
behavior of single molecules in lipid bilayers 
(9, lo), in fluids (11-13), or recently, in living 
cells (14)  and their membranes (15, 16).Here, 
we show for the first time that this method can 
be used for the visualization and kinetic char- 
acterization of the infection pathway of single 
viruses in living cells. 

The viral infection process is a very intrigu- 
ing interaction in nature. It starts with the con- 
tact between the virus and the cell membrane 
and finally results in transport of the virus into 
the nucleus and gene expression. For antiviral 
drug design, as well as for the development of 
efficient gene therapy vectors, it is essential to 
understand these processes. Electron rnicrosco- 
py is one tool for obtaining knowledge on the 
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