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alized F distribution, which has five param- 

Predictability of the UK Variant eters. We and gamma distributions as specialWeibull, also investigated the lognormal, 
cases of this distribution (12). (iii) w e  as-Creutzfeldt-Jakob sumed that the incubation period was inde- 

Disease Epidemic 
pendent of age at infection (13). (iv) The 
model was restricted to the 40% (approxi- 
mately) of the UK population assumed to be 

Jerome N. Huillard d'Aignaux,* Simon N. Cousens, Peter C. Smith methionine homozygous at codon 129 of the 
prion protein (PrP) gene. (All cases of vCJD 

Back-calculation analysis of the variant Creutzfeldt-Jakob disease epidemic in  identified to date have been of this genotype.) 
the United Kingdom is used t o  estimate the number of infected individuals and (v) To minimize the impact of reporting de- 
future disease incidence. The model assumes a hazard of infection proportional lays, we fitted the models to the data on the 
t o  the incidence of bovine spongiform encephalopathy in  the United Kingdom 82 cases with onsets before 2000 that had 
and accounts for precautionary control measures and very wide ranges of been identified by 31 December 2000. 
incubation periods. The model indicates that current case data are compatible The back-calculation model had seven 
wi th  numbers of infections ranging from a few hundred t o  several millions. In parameters in total [five for the incubation 
the latter case, the model suggests that the mean incubation period must be period distribution, one for the hazard of 
well  beyond the human life-span, resulting i n  disease epidemics of a t  most infection, and one for the effect of the 
several thousand cases. specified bovine offals (SBO) ban in 19891. 

The model was fitted by the maximum 
Variant Creutzfeldt-Jakob disease (vCJD) is infected, (ii) when they were infected, and likelihood method, assuming a Poisson 
caused by an agent that is currently indistin- (iii) how long it takes from infection for likelihood. Because of a very severe param- 
guishable from that responsible for bovine disease to become apparent-the incubation eter identifiability problem, we estimated 
spongiform encephalopathy (BSE) in cattle. period. To use this approach to estimate the the incubation period distribution parame- 
However, 5 years after the identification of number of individuals infected with the vCJD ters for fixed values of the hazard of infec- 
vCJD, great uncertainty remains over how agent, it is necessary to make assumptions tion (corresponding to total numbers of in- 
many individuals have been infected with the about when people were exposed to infection fections ranging from 100 to 12 million) 
agent and how many of these individuals will and how long it takes them to develop dis- and for fixed effects of the SBO ban rang- 
go on to develop clinical disease (1-5). ease. Previous work has shown that the esti- ing from 0 to 90%. Allowing a very flexible 

In the absence of a test for infection, one mated number of infections/cases produced incubation period distribution (offset gen- 
approach to estimating the number of infect- by this approach is very sensitive to the as- eralized F), we found that the cases ob-
ed individuals is provided by back-calcula- sumptions made about the incubation period served to date were almost equally compat- 
tion, a statistical technique developed in the distribution (2, 8, 9). ible with any number of infections up to 
context of the HIVIAIDS (human immuno- We have developed a family of back- several millions. However, when a Gery 
deficiency viruslacquired immunodeficiency calculation models (10) to explore the prev- large number of infections was considered, 
syndrome) epidemic (6, 7). This approach alence of infection with the vCJD agent and the modcl indicated that the average incu- 
makes use of the fact that the number and the incidence of clinical vCJD in the UK. The bation period was likely to be extremely 
timing of cases of disease that occur depend main features of these models are as follows: long and, in most instances, well beyond 
on three factors: (i) how many people were (i) The hazard of infection was assumed to the normal human life-span. As a result, the 

have been proportional to the incidence of corresponding epidemic sizes (clinical cas- 
ofLondon SchoolHygiene and Tropical Medicine, BSE (11). We did not consider onward, hu- es) lay within a much narrower range, from 
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Table 1. Estimates of numbers of infections, numbers of clinical cases, incubation period parameters, and prediction intervals by assumed incubation period (IP) 
distribution. Values shown are calculated assuming a SBO ban efficiency of 80%. 

Incubation Upper Limit on the number of infections for Expected annual numbers of cases 

period -Log Estimated number Median three Levels of confidence (corresponding (upper 95 and 99% 


likelihood of infections I P 

distribution (+constant (expected number (90% IP) expected number of clinical cases) prediction limits)' 


(number Of term) of clinical cases) (years)
parameters) 95% 99% 99.9% 2005 2010 2020 

Offset -134.50 Unrestricted 9.8- (16.5-m)t Unrestricted Unrestricted Unrestricted 16 (50,65) 12 (70,130) 8 (70,165) 

Generalized F (5) (250-3,0002) (3,0001) (3,0003) (3,0001) 

Generalized F -133.60 250 1 1.6 (1 6.8) 1,000 7,000 Unrestricted 8 (40,65) 2 (70,115) 1 (65,130) 


(no offset) (4) (200) (900) (2,500) (30,0001) 
Offset -134.45 400 16.8 (63.1) 25,000 350,000 Unrestricted 14 (50,70) 9 (70,110) 5 (105,200) 
Lognormal (3) (305) (2,000) (5,300) (1 3,000f) 
Offset -134.46 440 20.0 (67.9) 25,000 260,000 Unrestricted 16 (55,75) 10 (75,150) 6 (120,380) 
Weibull (3) (330) (4,000) (1 2,000) (35,0001) 
Offset -134.43 380 15.7 (38.5) 6,000 80,000 Unrestricted 20 (40,60) 8 (60,105) 3 (40,180) 
Gamma (3) (346) (2,500) (8,000) (40,0001) 

*For the offset generalized F distribution, the prediction limits have been calculated assuming the most likely number of infections to have been 190,000, resulting in an expected 
total of 500 clinical cases. tlnfinity symbol (a):Well beyond human life-span. $Point estimate of the number of clinical cases for 12 million infections. 
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the form of the incubation period distribution 
(i.e., reducing the number of parameters from 
five), the range for the number of infections 
with which the observed cases are compatible 
becomes narrower. For example, using a sim- 
ple generalized F distribution led to a point 
estimate of the total number of infections of a 
few hundred, with an upper 95% confidence 
limit of about 1000 (and upper 99% confi- 
dence limit of 7000). Using an offset lognor- 
mal distribution again led to a point estimate 
of the total number of infections of a few 
hundred. The predicted course of the vCJD 
epidemic was calculated under different as- 
sumptions about the incubation period distri- 
bution (14). No matter which incubation pe- 
riod distribution is used, the point estimates 
obtained from the model suggest that the 
epidemic of cases of vCJD is very close to its 
peak. However, the expected numbers of cas- 
es corresponding to the upper limits of infec- 
tion (14) indicate that the data are also com- 
patible with an epidemic whose peak, many 
years hence, is determined by mortality 
among infected individuals from competing 
causes. Table 1 also presents approximate 
prediction intervals (15) for annual numbers 
of cases at different times in the future. These 
indicate that the annual incidence of vCJD is 
unlikely ever to be much more than 100 cases 
(14). 

None of our models suggest that the num- 
ber of primary cases of vCJD in methionine 
homozygotes is likely to be more than a few 
thousand, even though the number of primary 
infections could be anything from a few hun- 
dred to many thousands or even millions. In 
interpreting these results, and extrapolating 
them to other codon 129 genotypes, we must 
bear in mind our model assumptions. Our key 
finding that, regardless of the number of in- 
fections that have occurred, the number of 
clinical cases is unlikely to exceed a few 
thousand (in any one genotype) is sensitive to 
a number of assumptions. 

First, we have assumed that in codon 129 
methionine homozygotes, the incubation pe- 
riod for vCJD has a unimodal distribution. 
This is a key assumption that is open to 
question (16). In mice, there are genetic fac- 
tors lying outside the coding region of the PrP 
gene that have an important influence on the 
incubation period of transmissible spongi-
form encephalopathies (1 7-20). It is possible, 
therefore, that among human codon 129 me- 
thionine homozygotes there are other, pres- 
ently unknown genetic factors that influence 
the vCJD incubation period. We have used 
the generalized Fdistribution, which can take 
a wide range of unimodal forms. If, across 
the methionine-homozygous population, the 
mixture of other genetic factors affecting in- 
cubation period results in an overall incuba- 
tion period distribution that is close to uni- 
modal, we would be confident that, broadly, 

our findings with respect to the numbers of 
clinical cases hold. If, however, the overall 
incubation period distribution is strongly 
multimodal, there might be many more clin- 
ical cases of vCJD than our models predict. If 
the latter is the case, then the development of 
reliable back-calculation models will be pos- 
sible only when the relevant genetic factors 
have been identified and measured in the 
population. Strong multimodality is most 
likely to apply if only a small number of other 
genetic factors are involved and there was 
little variation between infected individuals 
in the infecting dose to which they were 
exposed. 

Second, we have assumed that the incu- 
bation period distribution does not vary with 
age at infection. Experimental evidence in 
mice indicates that, for a fixed dose, incuba- 
tion period does vary with age at inoculation 
(21). However, this variation is small, with 
young mice having incubation periods 7 days 
longer than older mice, compared with mean 
incubation periods of several hundred days. If 
vCJD infections occurred through diet, as we 
have implicitly assumed, infected individuals 
may have been exposed to a very wide range 
of infectious doses whose impact on incuba- 
tion period is likely to dwarf any small age 
effects. 

Third, to extrapolate from codon 129 me- 
thionine homozygotes to other genotypes, we 
need to assume that across codon 129 geno- 
types the relation between the mean and the 
variance of the incubation period distribution 
does not vary greatly. If other genotypes have 
longer mean incubation periods but with low- 
er variance, then we might observe larger 
numbers of cases in these genotypes. It is, 
however, unusual for the variance of a distri- 
bution to decrease as the mean increases. If 
this is not the case, then to extend our results 
to include all genotypes one could, as a 
worst-case scenario, multiply our predictions 
by about 2.5 to obtain a figure for the whole 
population. 

A further assumption of the model is that 
infection was essentially through diet and that 
the amount of infectivity consumed in food 
during any given period was proportional to 
the number of BSE cases occurring up until 
1996. In the absence of ongoing human-to- 
human transmission of the vCJD agent, our 
findings are likely to be much less sensitive 
to this assumption than they are to the as- 
sumptions about incubation period. 

The upper limits of our estimates differ 
from those presented by Ghani et al. (1). 
These authors used simulation to identify a 
range of scenarios compatible with the actual 
observed incidence. One advantage of this 
approach is that it allows the incorporation 
into the model of several parameters that 
could not be estimated. However, it does not 
enable any probability statement to be made 

about the coverage of the range of epidemics 
that it produces, and running more simula-
tions can only increase the range of scenarios 
that are plausible. We believe the most likely 
explanation for the different ranges of cases 
coming out of our work and that of Ghani et 
al. is that the coverage probabilities of those 
intervals are different. 

Our models suggest that the number of 
primary cases of vCJD in methionine ho- 
mozygotes is unlikely to exceed a few thou- 
sand, but that considerably greater uncertain- 
ty surrounds the number of primary vCJD 
infections that have occurred. Whether a few 
hundred or many more people have been 
infected has important consequences for pub- 
lic health and, in particular, for the risk of 
secondary transmission (22). If secondary 
transmission does occur, the mean incubation 
period in secondary cases may be much 
shorter than in primary cases (23). In the 
absence of a reliable test for asymptomatic 
infection, considerable uncertainty about the 
number of infected individuals may remain 
for a number of years. 
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Multiple sclerosis is a demyelinating disease, characterized by inflammation in  the 
brain and spinal cord, possibly due t o  autoimmunity. Large-scale sequencing of 
cDNA libraries, derived from plaques dissected from brains of patients with multiple 
sclerosis (MS), indicated an abundance of transcripts for osteopontin (OPN). Mi- 
croarray analysis of spinal cords from rats paralyzed by experimental autoimmune 
encephalomyelitis (EAE), a model of MS, also revealed increased OPN transcripts. 
Osteopontin-deficient mice were resistant t o  progressive EAE and had frequent 
remissions, and myelin-reactive T cells in OPN-'- mice produced more interleukin 
10 and less interferon-? than in OPN+'+ mice. Osteopontin thus appears t o  
regulate T helper cell-1 (T,l)-mediated demyelinating disease, and it may offer 
a potential target in blocking development of progressive MS. 

Multiple sclerosis (MS) is often characterized investigated a role for OPN in MS and an 
by relapsing episodes of neurologic impair- experimental model for MS, experimental au- 
ment followed by remissions. In about one- toimmune encephalomyelitis (EAE) in mice. 
third of MS patients, this disease evolves into Initially, we set out to identify gene tran- 
a progressive course, termed secondary pro- scripts involved in the inflammatory response 
gressive MS (I). In a minority of patients, that might be increased in the central nervous 
progressive neurologic deterioration without system (CNS) during active EAE and that 
remission occurs from the onset of disease, returned to normal when EAE was success- 
and this is called primary progressive MS. fully treated after the onset of paralysis. Cus- 
The pathophysiologic and genetic causes un- tomized oligonucleotide microarrays were 
derlying primary versus secondary progres- produced to monitor transcription of genes 
sive MS remain unclear (2-4). involved in inflammatory responses (I 1-14). 

Osteopontin, also called early T cell acti- These initial microarray experiments showed 
vation gene-1 (5, 6), has pleiotropic functions that osteopontin transcripts were elevated in 
(7-9), including roles in inflammation and in the brains of rats with EAE but not in brains 
immunity to infectious diseases (8). OPN of rats protected from EAE. Details of these 
costimulates T cell proliferation (8) and is experiments are available at Science Online 
classified as a T helper cell-1 (T,1) cyto- (14). 
kine, because of its ability to enhance inter- In parallel, we performed high-throughput 
feron-? (IFN-?) and interleukin 12 (IL- 12) sequencing of expressed sequence tags 
production, and to diminish IL-10 (10). We (ESTs), using nonnormalized cDNA brain 

libraries 115-17). generated from MS brain , -
'Department of Neurology and Neurological Sciences, lesions and control brain (18). Using this 
Beckman Center for Molecular Medicine, BOO2. Stan- protocol, the mRNA populations present in 
ford, CA 94305, USA. 2Department of Neurology, 
University of California at San Francisco School of the brain specimens are accurately represent- 
Medicine, San Francisco, CA 94143, USA. 3Neuroim- ed, enabling the quantitative estimation of 
munology Laboratory, Department of Biochemistry, transcripts and comparisons between speci- 
La Trobe University, Bundoora, Victoria, 3083 Austra- mens (18) [Table 1 ,and Web table 1 (14)]. 
lia. 4Department of Cell Biology and Neuroscience, 
Rutgers University, Piscataway, NJ 08854, USA. 5De- Molecular mining of two sequenced libraries 
partment of Pathology (Neuropathology), Stanford and their comparison with a normal brain 
University School of Medicine, Stanford, CA 94305, library, matched for size and tissue type and 
USA. 6Roche Bioscience, 3401 Hillview Avenue, Palo constructed with an identical protocol, re-
Alto, CA 94304, USA. vealed that OPN transcripts were frequently 
'These authors contributed equally to  this work. detected and were exclusive to the MS 
?These senior authors contributed equally to  this mRNA population, but not found in control work. 
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