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connecting the p40 "anchoring helix" to Arp3 
may allow this reorientation. 

Much more work is required to determine 
how Arp213 complex is activated and medi- 
ates filament branching. The crystal structure 
of Arp213 complex provides the foundation 
for detailed analysis of these mechanisms as 
well as more penetrating studies of actin fil- 
ament dynamics in cells. 
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We have used the pH-induced self-assembly of a peptide-amphiphile t o  make 
a nanostructured fibrous scaffold reminiscent of extracellular matrix. The de- 
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fibers are able t o  direct mineralization of hydroxyapatite t o  form a composite 
material in  which the crystallographic c axes of hydroxyapatite are aligned with 
the long axes of the fibers. This alignment is the same as that observed between 
collagen fibrils and hydroxyapatite crystals i n  bone. 

Self-assembly and biomineralization are used 
in biology for fabrication of many composite 
materials. Bone tissue is a particularly com-
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any material with structure on the nanoscale 
is a challenging problem. Fabrication of ma- 
terials that resemble bone, even at the lowest 
level of hierarchical organization, is even 
more difficult because it involves two dissim- 
ilar organic and inorganic nanophases that 
have a specific spatial relation with respect to 
one another. One way to accomplish t h ~ s  in 
an artificial system is to prepare an organic 
nanophase designed to exert control over 
crystal nucleation and growth of the inorgan- 
ic component. 

The controlled nucleation and growth of 
crystals from organic templates has been 
demonstrated by in vitro experiments (3-8) 
and in a number of natural biomineralizing 
systems (9-11). These studies on templated 
crystal growth suggest that nucleation occurs 
on surfaces which expose repetitive patterns 
of anionic groups. These anionic groups tend 
to concentrate the inorganic cations creating 
local supersaturation followed by oriented 
nucleation of the crystal. Many groups have 
investigated the preparation of bone-like ma- 
terials with the use of organic substrates such 
as poly(1actic acid), reconstituted collagen. 
and many others (12-18), and some studies 
show a similar correlation between the crys- 

1684 	 23 NOVEMBER 2001 VOL 294 SCIENCE www.sciencemag.org 

mailto:s-stupp@northwestern.edu


R E P O R T S  

tallographic orientation of hydroxyapatite 
when the organic scaffold is made from re- 
constituted collagen (19). However, to our 
knowledge, this has never been demonstrated 
in a designed self-assembling system. 

We report on the use of self-assembly and 
mineralization to prepare a nanostructured 
composite material that recreates the structur- 
al orientation between collagen and hydroxy- 
apatite observed in bone. The composite is 
prepared by self-assembly, covalent capture, 
and mineralization of a peptide-amphiphile 
(PA). The PA is synthesized by standard 
solid phase chemistry that ends with the al- 
kylation of the NH, terminus of the peptide. 
Mono or di-alkyl tails attached to the NH, or 
COOH termini of peptides have been report- 
ed to influence their aggregation and second- 
ary structure in water in both synthetic (20- 
22) and natural (23) systems. According to 
existing knowledge of amphiphile self-as- 
sembly (24), an alkyl tail with 16 carbon 
atoms coupled to an ionic peptide should 
create an amphiphile that assembles in water 
into cylindrical micelles because of the am- 
pliiphile's overall conical shape. The alkyl 
tails would pack in the center of the micelle 
leaving the peptide segments exposed to the 
aqueous environment. These cylindrical mi- 
celles can be viewed as fibers in which the 
chemistry of the peptide region is repetitively 
displayed on their surface. 

Three features were engineered into the 
peptide region of the PA. First, the prepared 
fibers must be robust, and for this reason four 
consecutive cysteine amino acids were incor- 
porated in the sequence for covalent capture 
(25-30) of the supramolecular nanofibers. 
These residues can be used to form disulfide 
bonds between adjacent molecules upon ox- 
idation, which lock the supramolecular struc- 
ture into place. The formation of the disulfide 
bonds is reversible, allowing either self-cor- 
rection of improper disulfide bonds or a re- 
turn to the supramolecular structure by treat- 
ment with mild reducing agents. Second, the 
fibers must be able to nucleate the formation 
of HA in the proper environment. It is well 
known that acidic moieties play a key role in 
biomineralization processes (11, 12) and that 
phosphorylated groups are particularly im- 
portant in the formation of calcium phosphate 
minerals. For example in dentin, the phos- 
phophoryn protein family contains numerous 
repeats of the sequences Asp-Ser(P)-Ser(P) 
&d Ser(P)-Asp (31). These massively phos- 
phorylated proteins are closely associated 
with the collagen extracellular matrix (ECM) 
and are known to play an important role in 
HA mineralization (32). Therefore, we incor- 
porated a phosphoserine residue into the pep- 
tide sequence that, after self-assembly, allows 
the fiber to display a highly phosphorylated 
surface equivalent to that presented by a long 
peptide segment. This, in part, captures the 

repetitive organization of phosphate groups 
found in phosphophoryn proteins. Third, it 
would be beneficial for biomedical applica- 
tions if the fibers could promote the adhesion 
and growth of cells on their surfaces. Another 
collagen-associated protein, fibronectin, con- 
tains the sequence Arg-Gly-Asp (RGD). This 
sequence has been found to play an important 
role in integrin-mediated cell adhesion (33); 
therefore, we included RGD in our peptide as 
well. Collectively, these design principles led 
us to prepare the PA molecule shown in Fig. 
1. 

After synthesis, the PA (34) was treated 
with dithiothreitol (DTT) at a pH of 8 to 

reduce all cysteine residues to free thiols. At 
this pH, the PA was found to be soluble in 
excess of 50 mg/ml in water. However, upon 
acidification of the solution below pH 4, the 
material rapidly becomes insoluble. Solutions 
more concentrated than 2.5 mg/ml form bire- 
fringent gels in water that are self-supporting 
upon inversion of the container. Examination 
of the gels by cryo-transmission electron 
microscopy (cryo-TEM), which preserves the 
native, hydrated state of the material, re- 
vealed a network of fibers with a diameter of 
7.6 + 1 nrn (35,36) and lengths up to several 
micrometers (Fig. 2B). Positively and nega- 
tively stained dried fibers were found to have 

Fig. 1. (A) Chemical structure of the peptide amphiphile, highlighting five key structural features. 
Region 1 is a long alkyl tail that conveys hydrophobic character to the molecule and, when 
combined with the peptide region, makes the molecule amphiphilic. Region 2 is composed of four 
consecutive cysteine residues that when oxidized may form disulfide bonds to polymerize the 
self-assembled structure. Region 3 is a flexible linker region of three glycine residues to provide the 
hydrophilic head group flexibility from the more rigid cross-linked region. Region 4 is a single 
phosphorylated serine residue that is designed to interact strongly with calcium ions and help direct 
mineralization of hydroxyapatite. Region 5 displays the cell adhesion ligand RGD. (B) Molecular 
model of the PA showing the overall conical shape of the molecule going from the narrow 
hydrophobic tail to the bulkier peptide region. Color scheme: C, black; H, white; 0, red; N, blue; P, 
cyan; S, yellow. (C) Schematic showing the self-assembly of PA molecules into a cylindrical micelle. 
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diameters of 6.0 + 1 nrn (Fig. 2, A and C). 
When TEM was used with the positive stain 
uranyl acetate, which pref---"*;-ll-r @+-;"@ 

Fig. 2. (A) Negative 
stain (phosphotungstic 
acid) TEM of the self- 

rron aensiry at me penpne 
Additionally, gels that were stained, embed- 
ded in epoxy resin, and sectioned for TEM, 
chnw~rl fihprc in rrncc certinn in whirh An.. 

ranged, in ribbon-like 
parallel arrays. (B) Vit- 
reous ice crvo-TEM of 

u u b - a u a y w u  y a w b u & a  v v b ~ u  u 

ing that only the c--'-- --- 
. 

S' 

experiments indicate that the hydrophobic al- 
kvl tails back on the inside of the fiber and 

(C) Positive stain (ura- 
nvl acetate) TEM of the 

~,.+~.L,,.~A ...P-n ,,bserved indicat- the fibers reveals the 
diameter of the fibers 

J u r u  ru~tion of the fiber in their native hydrated 
tained (Fig. 2D). These two positive-staining state to be 7.6 lnm. I 

mation of the fibers waa luu 

tration-independenl 
ders of magnitude (0.01 mg/ml to 50 mg/ml); 
however. a second level of hierarchv was 

localized on the periph- 
erv of the fibers. [D) 

nhwrvei that waq cnncentratinn-dene;~dent ~ 6 i n  section TEM '& I - - - -- . - - -- -- - . . - - - - -- - - -- -- - -- - - - 
As the concentration of the PA was increased, 
a larger number of the fibel 
to pack into flat ribbons of fibers (Fig. 2, A 
and C). Examination of the self-assembled 

positively stained (ura- 
nvl acetate) nanofibers 

linking and embedding 
in eDoxv resin. Two fiber s are observed in cross section farrows). showing the lack of staining in the v 

material bv Fourier transform infrared spec- intehoiof the fiber. 
- 
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ity and rapidly disassemble at pH 8. Together 
with the controlled self-assembly, this creates 

with the PA fiber long axis was observed (Fig. 
3, D and E). In one control, carbon-coated TEM 

highly dynamic system of self-assembly and 
covalent capture may be easily modified 

a highly dynamic system that can intercon- 
vert between discrete molecules, self-assem- 

grids were treated as above but in the absence 
of PA.fibers. In this case, no mineral deposit 

through the selection of different amino acids 
for other applications in tissue engineering 

bled supramolecular fibers, and covalently 
captured polymeric fibers, depending solely 
on the environment in which the material is 
placed. 

was found on the grids. In a second control, a 
PA was prepared in which phosphoserine was 

and mineralization. These mineralized nano- 
fibers resemble the lowest level of hierarchi- 

replaced by serine and treated as above with 
calcium and phosphate. The nonphosphorylated 
fibers were observed by TEM after 20 and 30 
min of incubation, and in both cases an amor- 

cal organization of bone in that the crystallo- 
graphic c axis of HA is oriented along the 

To investigate the mineralization proper- 
ties of the PA nanofibers, the material was 

long axis of the organic fibers. 
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the direction of the c axes of the crystals. 
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Factors Controlling Long- and 

Short-Term Sequestration of 
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Mid-latitude Forest 
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Net uptake of carbon dioxide (CO,) measured by eddy covariance in a 60- to 
80-year-old forest averaged 2.0 2 0.4 megagrams of carbon per hectare per 
year during 1993 to 2000, with interannual variations exceeding 50%. Biometry 
indicated storage of 1.6 2 0.4 megagrams of carbon per hectare per year over 
8 years, 60% in live biomass and the balance in coarse woody debris and soils, 
confirming eddy-covariance results. Weather and seasonal climate (e.g., vari- 
ations in growing-season length or cloudiness) regulated seasonal and inter- 
annual fluctuations of carbon uptake. Legacies of prior disturbance and man- 
agement, especially stand age and composition, controlled carbon uptake on 
the decadal time scale, implying that eastern forests could be managed for 
sequestration of carbon. 

The terrestrial biosphere has sequestered signif- 
icant amounts of atmospheric CO, since 1980, 
with major contributions from northern mid- 
latitude forests (1-3). The sink has varied inter- 
annually by a factor of 2 or more, correlating 
with global-scale climate variations (4-6), and 
may have increased in the 1990s (3). The mag- 
nitude of uptake attributed to mid-latitude for- 
ests is controversial, however, partly due to 
sharp disagreement between atmospheric in- 
verse models and forest inventories (7). The 
cause of net C uptake is also uncertain, with 
recent studies variously citing land-use change 
(8, 9), fire suppression (lo), longer growing 
seasons (II), and fertilization by elevated CO, 
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(12) or N deposition (13). These factors must be 
understood in order to predict growth rates of 
atmospheric CO, and to develop strategies for 
restraining future increases. 

We report here rates of net ecosystem ex- 
change (NEE) of CO, for 9 years in a northern 
hardwood forest (Harvard Forest, 42.5N, 

Fig. 1. Mean annual C ? 
uptake from eddy-
covariance data 
sus the hourly-mean 
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72.2W) measured by using eddy-covariance 
techniques (14-16). These data are compared 
with 8 years of biometric measurements of 
species-specific changes in C storage in live 
and dead wood, showing where and how the 
forest is storing C. We determine the C budget 
and responses to environmental forcing, includ- 
ing die1 variations, weather patterns (14), phe- 
nology, and interannual climate variability (15). . . 
~ d d i -fluxes may underreport respiration at 
night in calm winds (17), and methods for 
removing this bias (18) remain controversial. 
Here we address possible errors in eddy-covari- 
ance data using the biometric data and combine 
the observations to define the causes of C se- 
questration and its variation on time scales from 
hourly to decadal. 

Eddy-covariance data extend from 28 Octo- 
ber 1991 to 27 October 2000, with valid data for 
46,500 of 79,000 hours. Gaps occurred for cal- 
ibration, data transfer, intense precipitation, 
maintenance, equipment failure, and weak ver- 
tical exchange (u* < 20 cm s-') (Fig. 1). Eco- 
system respiration (R) was observed directly at 
night and extrapolated for daytime on the basis 
of day-night changes in soil temperature (18). 
Gross ecosystem exchange (GEE) was comput- 
ed from (NEE - R). The 9-year mean annual 
NEE, -2.0 Mg C ha-' year-', is similar to 
observations at other forested sites in the north- 
eastern United States (19, 20). Annual sums 
of NEE at this site are insensitive to u* within 
the limits established for valid data (Fig. 1). 

Biometric observations of tree growth and 
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