
trast to the leaky vasculature that is induced 
by overexpression of single vasculogenic 
growth factors such as VEGF (32-34), the 
HIF-induced vascular bed is stable (31).The 
more substantive neovascularization resulting 
from constitutive HIF-la expression may re- 
flect the fact that this transcription factor 
activates not only VEGF gene expression but 
also other genes important for the formation 
of new blood vessels [reviewed in (3.91. Se-
lective inhibitors of the HPH enzymes may 
therefore merit investigation as new drugs for 
therapeutic angiogenesis. 
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Microtubules are dynamically unstable polymers that interconvert stochasti- 
cally between polymerization and depolymerization. Compared with microtu- 
bules assembled from purified tubulin, microtubules in a physiological envi- 
ronment polymerize faster and transit more frequently between polymerization 
and depolymerization. These dynamic properties are essential for the func- 
tions of the microtubule cytoskeleton during diverse cellular processes. 
Here, we have reconstituted the essential features of physiological micro- 
tubule dynamics by mixing three purified components: tubulin; a microtu- 
bule-stabilizing protein, XMAP215; and a microtubule-destabilizing kinesin, 
XKCMI. This represents an essential first step in the reconstitution of 
complex microtubule dynamics-dependent processes, such as chromosome 
segregation, from purified components. 

Microtubules polymerize and depolymerize 
by the addition and loss of a@-tubulin dimer 
subunits from their ends (1). Polymerizing 
and depolymerizing microtubules coexist and 
infrequently interconvert between these two 
states, a behavior known as dynamic instabil- 
ity (2).The transition of a polymerizing mi- 
crotubule to a depolymerizing state is re-
ferred to as a catastrophe, and the converse 
transition is referred to as a rescue (3). Mi-

crotubules exhibit dynamic instability when 
assembled from purified tubulin (3,4) and in 
a physiological cytoplasmic environment (5-
lo) ,but there are notable differences between 
the two. In a physiological environment, mi- 
crotubules polymerize about fourfold faster 
than a similar concentration of purified tubu- 
lin. At the polymerization rates observed in 
physiological conditions. purified tubulin has 
a near-zero rate of catastrophe. In contrast, 
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microtubules in cells and in cytoplasmic ex- 
tracts have a high catastrophe rate despite 
their high polymerization rate. 

Clues to the dynamic behavior of microtu- 
bules in physiological conditions have come 
from the identification of proteins that modulate 
microtubule dynamics. Microtubule-associated 
proteins (MAPS) increase the polymerization 
rate of microtubules, whereas destabilizing pro- 
teins increase the rate of catastrophe. In Xeno- 
pus egg extracts, the dominant stabilizing MAP 
appears to be -215, a member of an evo- 
lutionary conserved protein family (11, 12). 
Depleting XMAP2 15 prevents microtubule 
growth, whereas depletion of other MAPS has 
so far had little effect (12, 13). The dominant 
catastrophe factor in Xenopus extracts is 
XKCMl (14, 1 9 ,  a member of the Kin1 sub- 
family of kinesins (16). Depletion of XKCMl 
markedly stabilizes microtubules, whereas de- 
pletion of other catastrophe factors have to date 
had more modest effects (14, 17). 

Depletion experiments suggest that these 
two factors oppose each other to determine the 
stability of the microtubule lattice in Xeno- 
pus extracts. Depletion of XMAP215 desta- 
bilizes microtubules, and subsequent inhibi- 
tion of XKCMl causes the microtubules in 
-215-depleted extracts to become stable 
again (12). These results suggest that the 
coordinate action of only these two proteins 
on tubulin may explain why microtubules 
in cells can both polymerize rapidly and 
exhibit high catastrophe rates. We tested 

this hypothesis by combining these two 
factors with purified tubulin in vitro and 
examining the behavior of microtubules. 
We first produced full-length recombinant 
His,-tagged XMAP215 and XKCMl (18). 
As expected, XKCMl reduced microtubule 
length whereas XMAP2 15 increased micro- 
tubule length (Fig. 1) (15, 18-20). Howev- 
er, when added together, XMAP215 op- 
posed the ability of XKCM1 to decrease the 
average length of microtubules (Fig. 1) 
(18). Therefore, we conclude that the rela- 
tive activities of XMAP215 and XKCMl 
can determine the steady-state length of 
microtubules assembled from purified tu- 
bulin in the absence of other factors. 

In Xenopus extracts, XMAP2 15 suppress- 
es the ability of XKCMl to induce microtu- 
bule catastrophe (12). To test if this suppres- 
sion can be observed with purified proteins, 
we set up a real-time assay in which the 
behavior of individual microtubules was 
monitored by video-enhanced differential in- 
terference contrast (VE-DIC) microscopy 
(21). Briefly, purified centrosomes were ad- 
sorbed to the surface of a perfusion chamber, 
and tubulin was perfused into the chamber 
and allowed to polymerize (18). Different 
combinations of factors with tubulin were 
then perfused into the chamber, and the num- 
ber of microtubules transiting from polymer- 
ization to depolymerization after perfusion 
was quantified (18). After perhsion of 150 
nM XKCM1 together with tubulin, 60 to 70% 
of the microtubules transited to depolymer- 
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the absence (A) or 
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nM XMAP215. Micro- 
tubule asters are 
shown after 5 min of 
incubation at 37OC 
(20). Bars, 25 pm. (C) 
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crotubule length in (A) 
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poses XKCMI in the 
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tubule length in vitro. 
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- 

microtubules (-XMAP, open arrowheads; + 

plasmic extracts is a direct consequence of 
the action of these two proteins at microtu- 
bule ends. 

The above results suggested that poten- 
tially a steady-state mixture of tubulin, 
XMAP2 15, and XKCMl could reconstitute 
the two characteristic physiological features 

- 

of dynamic instability: rapid polymerization 
and high catastrophe rates (Table 1). To ex- 

- XKCM1 

fl 7 

plore this idea, we developed conditions in 
which the dynamic behavior of these micro- 
tubules could be directly observed by DIC 
microscopy (22). The concentrations of these 
proteins in Xenopus extracts have been esti- 
mated to be 25 pM (tubulin) (23), 60 nM 
(XKCMl) (14), and 0.6 pM (XMAP215) 
(12). Using a mixture of 25 pM tubulin, 0.2 
pM XKCMl, and 0.8 pM XMAP215, we 
were able to reconstitute physiological pa- 
rameters of dynamic instability (18). A typi- 

A Before perfus~on 
(Tubul~n alone) After ~ e ~ ~ u s ~ o ~  

Perfusion FP~~- 
w~th 

i) Control 
buffer 

i i )  XKCMl 

i i i )  XKCMI " 

+ XMAP215 

Fig. 2. XMAPZ15 inhibits catastrophes induced 
by XKCMI. (A) Images of microtubules before 
and 4 min after perfusion (27). Microtubules 
were polymerized from centrosomes with 33 
pM tubulin (left). Perfusion chambers were per- 
fused with tubulin (33 pM) and control buffer 
(i), 0.1 5 pM XKCMI (ii), or 0.1 5 p M  XKCMI + 
1.2 pM XMAP215 (iii). Bar, 10 pm. (B) The 
percentage of shrinking microtubules after per- 
fusion of XKCMI (0.15 pM) + XMAP215 (0, 
0.6, or 1.2 pM) was plotted versus the concen- 
tration of XMAP215. 
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Table 1. Comparison of the parameters of microtubule dynamics in vitro and in vivo. Dashes indicate that no microtubules were formed. NA, not applicable. 

Parameter 

-- - - - - 

In vivo 
In vitro 

(25 pM tubulin) Xenopus Mammalian 
egg extracts Newt LLCPK-1 cells§ 

lung cells# 

Tubulin +0.8 pM 
alone XMAP215 + O'z pM x~api15 Interphase* Mitotic? XKCMI + 0.2 pM 

XKCMI 

lnterphase Mitotic 

Growth (V,) 2.56 6.76 8.73 7.10 11.40 7.20 11.50 12.80 
(pmlmin) (+0.75) (+ 1.76) (23.72) 

Shrinkage (V,) N A NA 19.94 9.40 13.50 17.30 13.10 14.10 
(pmlmin) (25.20) 

Catastrophe (Fa) 0.04 0 1.06 0.69 2.44 0.84 1.56 3.48 
(eventslmin) 

Rescue (F,J NA N A - 1.30 1.08 0.70 2.64 10.50 2.70 
(eventslmin) 

*Verde,et al. (9). tTournebize et al. (10). SCassimeris et al. (5). gRusan et al. (7). 

crotubule length in vivo (31). Thus, this - - 
three-component system may represent a 
conserved module that generates the charac- 
teristic behavior of physiological microtu- 
bules. The simple mixture we describe here 
will serve as a starting point for analyzing the 
effect of other microtubule regulators, such as 
XMAF'230 and Op18 (13, 17), in a recon- 
struction-type approach. Furthermore, it rep- 

T- resents an important step in the pursuit of the 
eventual reconstitution of complex dynamic 
microtubule assemblies, such as the mitotic 

Fig. 3. Reconstitution of physiological microtubule dynamics with XMAP215 and XKCMI. (A) 
Dynamic instability behavior of microtubules in the presence of 25 p M  tubulin, 0.8 p M  XMAP215, 
and 0.2 p M  XKCMI at 30°C (22). VE-DIC images of microtubules are shown at various time points 
(t, to  tJ. g, growing microtubule; p, pausing microtubule; s, shrinking microtubule. The colors of 
arrows and arrowheads in (A) correspond to  the traces of microtubules in (B). (B) Life-history traces 
of the microtubules. (C) Fate of a single microtubule. Scale bars, 10 pm. 

cal aster growing under these conditions is 
shown in Fig. 3. Quantification of microtu- 
bule dynamics revealed that this simple three- 
component mixture recapitulated the essen- 
tial features of physiological microtubule dy- 
namic instability (Table 1). 

Why does the three-component mixture 
reconstitute physiological dynamic instabili- 
ty? XMAP215 alone accounts for the ob- 
served fast polymerization rate, whereas 
XKCMl alone prevents any assembly of mi- 
crotubules, presumably as a consequence of 
inducing a catastrophe rate that is too high 
(Table 1) (18). In the three-component mix- 
ture, XMAP215 must partially suppress the 
catastrophe-promoting activity of XKCMl in 
order to generate the combination of fast 

polymerization and high catastrophe rates. 
This partial suppression of XKCM1-induced 
catastrophes by XMAP215 (Fig. 2) without 
influencing the polymerization rate (Table 1) 
is central to understanding why the three- 
component mixture reconstitutes the combi- 
nation of fast polymerization and high catas- 
trophe rates. 

Taken together with the results in Xeno- 
pus extracts (12, 14), we believe that the 
essential features of dynamic instability in 
Xenopus egg extracts are derived from the 
sole action of these two factors on tubulin. 
These factors are conserved from yeast 
through mammals (24-31), and at least in 
Saccharomyces cerevisiae, orthologous fac- 
tors oppose each other in the control of mi- 
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To gain insights into the molecular basis for metastasis, we compared the global 
gene expression profile of metastatic colorectal cancer with that of primary can- 
cers, benign colorectal tumors, and normal colorectal epithelium. Among the genes 
identified, the PRL-3 protein tyrosine phosphatase gene was of particular interest. 
Itwas expressed at high levels in  each of 18cancer metastases studied but a t  lower 
levels in  nonmetastatic tumors and normal colorectal epithelium. In 3 of 12 
metastases examined, multiple copies of the PRL-3 gene were found within a small 
amplicon located at chromosome 8q24.3. These data suggest that the PRL-3 gene 
is important for colorectal cancer metastasis and provide a new therapeutic target 
for these intractable lesions. 

Metastasis is the neoplastic process responsi- 
ble for most deaths from cancer because the 
primary tumors can usually be surgically re- 
moved. Metastatic cells undergo cytoskeletal 
changes, loss of adhesion, and enhanced mo- 
tility and express proteolytic enzymes that 
degrade the basement membrane (1-3). How-
ever, much remains to be learned about this 
lethal process, and further progress is contin- 
gent upon identifying novel genes and path- 
ways that are consistently and specifically 
altered in metastatic lesions. 

In the case of colorectal tumorigenesis, 
the genes associated with initiation and pro- 
gression to the invasive (cancerous) stage are 
well known (4). However, no gene has been 
shown to be consistently and specifically ac- 
tivated in liver metastases, the lesions that are 
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usually responsible for the deaths of colorec- 
tal cancer patients. To learn which genes 
might be involved in this process, we per- 
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formed global gene expression profiles of 
liver metastases using serial analysis of gene 
expression (SAGE) technology (5). We first 
prepared a SAGE library from microdis-
sected metastases (6). Surprisingly, we found 
that many of the transcripts identified in these 
libraries were characteristic of normal hepatic 
or inflammatory cells, precluding quantita- 
tive analysis (7). To produce a more specific 
profile of metastatic epithelial cells, we de- 
veloped an irnrnunoaffinity fractionation pro- 
cedure to purify colorectal epithelial cells 
from contaminating stromal and hepatic cells 
(8).A SAGE library was prepared from cells 
purified in this manner, yielding -95,000 
tags representing at least 17,324 transcripts 
(6). These tags were compared with -4 mil-
lion tags derived from diverse SAGE librar- 
ies, particularly those from normal and ma- 
lignant (but nonmetastatic) colorectal epithe- 
lium (9). One hundred and forty-four tran- 
scripts were represented at significantly 
higher levels in the metastasis library than in 
the other libraries, while 79 transcripts were 

Fig. 1. PRL-3 expression in hu- A Normals Adenomas Cancers Metastases 
man colorectal tumors of dif- M N1 N2 N3 A1 A2 A3 C1 C2 C3 MI M2 M3 M 

khown previously 'to be ex-
pressed at nearly identical lev- B 
els in normal and neoplastic ,,,
colorectal tissues (9). The me- 
tastases analyzed in this exper- *$ 's' 
iment were derived from pa- g zoo 
tients other than the ones from 

' 
8',,, 
loo

whom the normal epithelium 
and other lesions were derived. -Epithelial cells were purified as 50 ' described (8). (A) Gel of RT- 
PCR ~roducts from normal N1 N2 N3 N4 

colorektal epithelium (N1 to 
N3), adenomas (A1 to A3), pri- 

A1 A2 A3 A4 C1 C2 C3 C4 M I  MZ M3 M4 

Tissue samples 

m a j  cancers (cI to C3), and metastases (MI to M3). Real-time PCR was performed for 24 cycles, 
when RT-PCR products from the metastases were evident but before signals from the other Lesions 
had appeared. Arrow indicates the PRL-3 RT-PCR product of 198 bp. Lane M, molecular size markers. 
(B) Results are expressed as the ratio between PRL-3 and APP expression and are normalized to the 
average expression in adenomas. Duplicates are shown for each analysis. 
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