photomorphogenesis (17). Here, we show that the enhanced stabilization of phyB-Pfr is responsible for the light-hypersensitive phenotypes in ARR4-overexpressing lines. Moreover, ARR4 contributes to this regulatory mechanism, and the ARR4:phyB interaction requires the extreme NH₂-terminus domain of phyB. These results raise the question whether phyB is the cognate sensor kinase of ARR4 or whether it is the target of a two-component signaling system comprising ARR4. Because histidine kinase activity of phyB has not been reported and because ARR4 gene expression is also induced by cytokinin (9), phyB may be the target of a hormone-modulated signaling system rather than the sensor kinase itself. The cytokinin receptor CRE1 is a functional sensor histidine kinase (19, 20), which might regulate the activity of ARR4. Arabidopsis seedlings expressing a nonphosphorylable form of ARR4, display a hyposensitive phenotype to red light (21). This observation demonstrates the importance of phosphorylation of ARR4 for the modulation of phyB signaling. Therefore we propose that ARR4 may act as a signal module integrating both red light (via phyB) and hormone (cytokinin) signaling.

References and Notes

- M. M. Neff, C. Fankhauser, J. Chory, *Genes Dev.* 14, 257 (1999).
- S. Mathews, R. A. Sharrock, *Plant Cell Environ*. 20, 666 (1997).
- F. Nagy, S. Kircher, E. Schäfer, Semin. Cell Dev. Biol. 11, 505 (2000).
- K.-C. Yeh, S.-H. Wu, J. C. Lagarias, Science 277, 1505 (1997).
- 5. H. A. W. Schneider-Poetsch, B. Braun, S. Marx, A. Schaumburg, *FEBS Lett.* **281**, 245 (1991).
- K.-C. Yeh, J. C. Lagarias, Proc. Natl. Acad. Sci. U.S.A. 95, 13976 (1998).
- 7. P. Matsumura, J. J. Rydel, R. Linzmeier, D. Vacante, J. Bacteriol. 160, 36 (1984).
- G. E. Schaller, D. Mathews, M. Gribskov, J. C. Walker, in *The* Arabidopsis *Book*, C. Somerville, E. Meyerowitz, Eds. (American Society of Plant Biologists, Rockville, MD, in press).
- I. Brandstatter, J. J. Kieber, *Plant Cell* **10**, 1009 (1998).
 A. Imamura *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* **95**, 2691 (1998).
- 11. T. D. Elich, J. Chory, *Plant Cell* **9**, 2271 (1997).
- 12. T. Kunkel et al., Eur. J. Biochem. **215**, 587 (1993).
- H. Kunket et al., Ed. J. Blochem. 213, 557 (1955).
 C.-M. Park, S.-H. Bhoo, P.-S. Song, Semin. Cell Dev. Biol. 11, 449 (2000).
- 14. J. Lohrmann et al., Mol. Genet. Genomics **265**, 2 (2001).
- 15. S. Kircher et al., Plant Cell 11, 1445 (1999).
- For details, supplementary material is available on Science Online at www.sciencemag.org/cgi/content/ full/294/5544/1108/DC1.
- K. Eichenberg, L. Hennig, A. Martin, E. Schäfer, *Plant Cell Environ.* 23, 311 (2000).
- K. Eichenberg, thesis, University of Freiburg, Germany (1999).
- 19. T. Inoue et al., Nature 409, 1060 (2001).
- T. Suzuki et al., Plant Cell Physiol. 42, 107 (2001).
 U. Sweere, thesis, University of Freiburg, Germany (2001).
- 22. A. Nagatani et al., Cell Physiol. 25, 1059 (1985).
- 23. S. Kircher et al., J. Cell Biol. 144, 201 (1999).
- We thank C. Fankhauser for the PHYB and PHYB-101 cDNAs; L. Hennig for the PHYA construct; A. Nagatani, M. Furuya, and L. Nover for antibodies;

and the Arabidopsis Biological Resource Center, Ohio State University, for expressed sequence tag clones. This work was supported by a Sonderforschungsbereich grant to K.H. and E.S., and a Howard Hughes Medical Institute International Scholarship and a Human Frontier Science Program grant to F.N. U.S. and K.E. were recipients of fellowships from the Landesgraduiertenförderung and the Evangelische Studentenwerk, respectively.

2 August 2001; accepted 19 September 2001

Synaptotagmin Modulation of Fusion Pore Kinetics in Regulated Exocytosis of Dense-Core Vesicles

Chih-Tien Wang,¹ Ruslan Grishanin,² Cynthia A. Earles,¹ Payne Y. Chang,¹ Thomas F. J. Martin,² Edwin R. Chapman,¹ Meyer B. Jackson^{1*}

In the exocytosis of neurotransmitter, fusion pore opening represents the first instant of fluid contact between the vesicle lumen and extracellular space. The existence of the fusion pore has been established by electrical measurements, but its molecular composition is unknown. The possibility that synaptotagmin regulates fusion pores was investigated with amperometry to monitor exocytosis of single dense-core vesicles. Overexpression of synaptotagmin I prolonged the time from fusion pore opening to dilation, whereas synaptotagmin IV shortened this time. Both synaptotagmin isoforms reduced norepinephrine flux through open fusion pores. Thus, synaptotagmin interacts with fusion pores, possibly by associating with a core complex of membrane proteins and/or lipid.

The fusion pore represents a pivotal intermediate in Ca²⁺-triggered neurotransmitter exocytosis. Contact sites between the vesicle and the plasma membrane presumably contain special components capable of forming a fusion pore after the binding of Ca^{2+} . The fusion pore has been likened to the channels that control ion flux across cell membranes (1), and like ion channels, single fusion pore activity can be observed in high-resolution electrical measurements (2-5). Whereas plasma membrane ion channels are formed by well-characterized proteins, the structural components of the fusion pore have yet to be identified. A molecule likely to be intimately associated with fusion pores is synaptotagmin, a synaptic vesicle protein that binds Ca²⁺ and phospholipid (6). Genetic and biochemical studies have suggested a number of possible functions for synaptotagmin in vesicle trafficking and fusion (7-10). One appealing scenario is that soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) form fusion pores. These proteins catalyze the fusion of lipid

vesicles (11), and putative fusion pores formed by these proteins could be regulated by synaptotagmin through rapid Ca^{2+} stimulated binding to the SNARE complex (12). Here, we examined the role of synaptotagmin in specific steps of secretion in norepinephrine (NE)-secreting PC12 cells using amperometry to monitor release from individual dense-core vesicles.

When an amperometry electrode was positioned at the surface of a PC12 cell, exocytosis of a single vesicle registered as a spike of current as NE was oxidized at the electrode surface (3, 13) (Fig. 1). These spikes were elicited by depolarization, in this case induced by rapid local application of KCl (Fig. 1) (14). Responses to KCl were characterized by a latent period with no spikes, followed by a period of spikes at irregular intervals. Recordings such as these provide information about the kinetics of exocytosis, allowing us to compare control PC12 cells (Fig. 1A) with cells transfected with either synaptotagmin I (Fig. 1B), synaptotagmin IV (Fig. 1C) (15), or the $\alpha 1A$ (P/Q-type) Ca²⁺ channel (Fig. 1D). Because of the irregular nature of the release process in a single trial, we counted spikes after a given time interval and constructed normalized waiting time distributions (Fig. 1E). These plots provide an overall time course for secretion that is in

¹Department of Physiology, University of Wisconsin Medical School, ²Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA.

^{*}To whom correspondence should be addressed. Email: mjackson@physiology.wisc.edu

REPORTS

qualitative agreement with previous studies of dense-core vesicle secretion in PC12 cells (16-18). Synaptotagmin I did not alter the time course significantly. By contrast, secretion was reduced by synaptotagmin IV and enhanced by Ca²⁺ channels. Thus, the level of secretion in PC12 cells falls in a range amenable to regulation in either direction.

The spike frequency (maximum slopes in Fig. 1E) was doubled by Ca²⁺ channels, unchanged by synaptotagmin I, and reduced 2.6-fold by synaptotagmin IV (Fig. 1F). Each change in frequency was accompanied by a change in latency (time from onset of stimulation to first spike) in the opposite direction (Fig. 1G). Other spike properties such as amplitude and quantal size, which are not directly related to the kinetics of exocytosis, were not altered by synaptotagmin I or IV (19). The results with Ca^{2+} channels indicate sensitivity to Ca²⁺ current, but the reduction in exocytosis caused by synaptotagmin IV transfection cannot be explained by changes in Ca²⁺ current. Ca²⁺ current was unaffected by transfection with synaptotagmin I or IV (20). The mean peak Ca^{2+} current elicited by voltage steps from -80 to +10 mV was 53 \pm 17 pA in control cells (N = 6), 47 \pm 10 pA

Fig. 1. Amperometric recordings of NE release from PC12 cells (depolarization with KCl indicated by bars). (A) Control cells. (B) Cells transfected with synaptotagmin I. (C) Cells transfected with synaptotagmin IV. (D) Cells transfected with α 1A Ca²⁺ channels. (E) Distributions of spike times for control, synaptotagmin I, synaptotagmin IV, and α 1A. The distributions were normalized to the number of trials (42 for control, 30 for synaptotagmin I, 38 for synaptotagmin IV, and 11 for α 1A). Mean (F) frequency and (G) spike latency. Frequency was calculated as the maximum slope from the plots in (E); first-spike latency was averaged from all recordings. Means are of >500 events from 11 to 42 cells, in experiments from two to eight transfections. **, *P* < 0.01; ***, *P* < 0.001.

The vesicle size distribution is altered in *Drosophila* lacking synaptotagmin I (24). We examined the distribution of quantal size, as this should reflect dense-core vesicle size (provided that vesicular NE concentration remains the same). Spike area (cube root transformed to be proportional to vesicle diameter) appeared to be normally distributed and was indistinguishable between controls and synaptotagmin I or IV (19). Ca²⁺ channel transfection produced a small but significant increase in spike amplitude and quantal size as well as a small shift in the distribution. PC12 cells contain a heterogeneous population of vesicles (25), and this analysis indi-

cated that synaptotagmin transfection did not redistribute vesicles between size groups.

The different vesicles of PC12 cells undergo exocytosis with different kinetics (16, 17). To determine whether transfected proteins were targeted to dense-core vesicles, we prepared fusion proteins of cyan fluorescent protein (CFP) linked to the NH₂-terminus of synaptotagmin I and IV (26). Cells transfected with these constructs exhibited CFP fluorescence concentrated in highly mobile puncta, consistent with a location on vesicles. Ca²⁺-triggered exocytosis was readily seen in these cells. Cells were fixed and stained with antibodies against CFP and the densecore vesicle protein chromogranin (Fig. 2). Chromogranin and synaptotagmin exhibited the same pattern of fluorescence, and overlays showed that both synaptotagmin I and IV colocalized with chromogranin (Fig. 2). Thus, both isoforms were targeted to densecore vesicles.

If synaptotagmin participates in membrane fusion, then transfecting different isoforms should alter fusion pore kinetics. We therefore examined the "foot" current, which immediately precedes the steeply rising spike (Fig. 3A). Foot onset signals fusion pore opening, and feet are seen in association with ~80% of spikes \geq 20 pA. The amplitude of \sim 3 pA was similar to that in chromaffin cells, but the duration was considerably shorter (3, 27). We examined the lifetimes of feet to determine whether synaptotagmin influences the stability of the fusion pore. As with ion channels (28, 29), the transitions of fusion pores are stochastic in nature, so we used lifetime distributions to characterize fusion pore kinetics (Fig. 3B). These were well fitted by a single exponential (P < 0.0001 for each fit), as previously reported (3). Thus, the open fusion pore can be represented by a single kinetic state. The time constant obtained from these exponential fits is equal to the mean open time, which was 1.38 \pm 0.04 ms in control cells, 1.76 ± 0.06 ms with synaptotagmin I, and 0.97 \pm 0.02 ms with synaptotagmin IV. These values are significantly different (Fig. 3C, left), indicating that exogenous synaptotagmin alters the stability of the fusion pore. Vesicles containing excess synaptotagmin I formed more stable fusion pores, and vesicles containing excess synaptotagmin IV formed less stable fusion pores. The lifetime of 1.70 ± 0.05 ms with Ca²⁺ channels was similar to that with synaptotagmin I, suggesting that enhancing Ca²⁺ entry and enhancing Ca²⁺ sensing have similar effects on fusion pore dynamics.

The foot current amplitude, by analogy with the ion channels, can be influenced by the shape of the fusion pore and by the dynamics of very rapid transitions between per-

2 NOVEMBER 2001 VOL 294 SCIENCE www.sciencemag.org

meation states. Ca^{2+} channels, synaptotagmin I, and synaptotagmin IV all reduced the foot amplitude (Fig. 3C, right). This suggests that these proteins either influence the structure of the fusion pore, possibly by narrowing or lengthening it, or modulate a dynamic pore-gating process that is too fast to see with our instrumentation.

The foot current is thought to terminate by fusion pore dilation, during which transmitter rapidly escapes from a vesicle in a spike of current. This phase of release is controlled by NE escape from an intravesicular matrix (27), as well as diffusion when exocytosis occurs at sites away from the electrode (30). Transfection with proteins altered spike shape (Fig. 4). Synaptotagmin IV accelerated the rise time (Fig. 4B) but left the decay times unchanged (Fig. 4, C and D). Slightly more than 50% of the spike decays were double exponential, with the fast component dominating. Ca²⁺ channels and synaptotagmin I had no effect on the rise time (Fig. 4B) but slowed the fast component of decay (Fig. 4C). The slow component of decay was markedly slowed by synaptotagmin I (Fig. 4D). MUNC18 was also recently reported to alter spikes, reducing the half-width and quantal size of spikes in chromaffin cells (31). Because spike shape and size are governed by events after fusion pore dilation, these results are not what one would expect for proteins involved in membrane trafficking. Thus, the factors controlling transmitter efflux after fusion pore dilation require further study.

Synaptotagmin I and IV both altered fusion pore lifetime (Fig. 3), indicating that this protein regulates the fusion step. Because our measurements are at the single-channel level, we used ideas developed from channel kinetics to interpret the results (28, 29). We consider assembly of a closed fusion pore, reversible opening and closing, and irreversible open pore dilation in a kinetic scheme.

$$\stackrel{k_{a}}{\rightarrow} C \underset{\scriptstyle k}{\stackrel{k_{o}}{\rightleftharpoons}} O \stackrel{\scriptstyle k_{d}}{\rightarrow} D$$

The open state (O) produces foot current, and the dilating state (D) produces the spike. k_a is the assembly rate constant, k_o and k_c are the opening and closing rate constants, and k_d is the rate of entering the dilating state. The open-time distribution will then be a single exponential with a time constant:

$$\tau_{\rm fp} = 1/(k_{\rm d} + k_{\rm c})$$

Both $k_{\rm d}$ and $k_{\rm c}$ contribute to $\tau_{\rm fp}$, because both processes terminate the open fusion pore state. According to this model, synaptotagmin I reduced the sum $k_{\rm d}$ + $k_{\rm c}$, whereas synaptotagmin IV increased it.

Changes in k_a , k_o , k_d , k_c , or the number of membrane-associated vesicles can all account for the changes in time course of exocytosis

Fig. 2. Synaptotagmin on dense-core vesicles. CFP-tagged synaptotagmin and the dense-core vesicle protein chromogranin were visualized by double immunofluorescence (26) in cells transfected with CFP-synaptotagmin I (A) and CFP-synaptotagmin IV (B). CFP-synaptotagmin is shown as green (left) and chromogranin as red (center). Merged images (right) show colocalization as yellow. Cells that did not take up cDNA for the fusion protein stain only for chromogranin and appear red in the merged images.

Fig. 3. (A) Foot current indicates fusion pore opening. Differ-ent scales illustrate the whole spike (left) and the foot (right). The foot regions (shaded) are delimited by the baseline and spike onset (scale bars: 10 pA, 2 ms, left; 5 pA, 1 ms, right). (B) Fusion pore open-time distributions. Single exponential fits yielded the mean open time, τ (τ_{fp} in text). (C) τ (left) and mean NÉ flux (right). Flux was computed as foot area divided by duration. **, P < 0.01; ***, P < 0.001. All means were of \sim 100 events.

www.sciencemag.org SCIENCE VOL 294 2 NOVEMBER 2001

in Fig. 1. Increasing k_c would make exocytosis slower by terminating more fusion pore openings without producing spikes, leaving stand-alone feet, which often elude detection (32). It is important that increasing k_c reduces the frequency and increases the latency, because it can also account for the reduction in τ_{fp} . This provides a simple explanation for the direction of the observed changes produced by synaptotagmin IV in three different measurements. Synaptotagmin I increased the fusion pore lifetime (Fig. 3) but left the latency and frequency unchanged (Fig. 1). According to the above model, this would result from 20% reductions in both k_d and k_c . This will not alter spike frequency or latency (Fig. 1, F and G) because the fraction of open fusion pores that dilate, $k_d/(k_c + k_d)$, remains unchanged. Thus, the results of both synaptotagmin I and IV are most parsimoniously explained by changes in rate constants directly associated with the open fusion pore.

PC12 cells express synaptotagmin I (33, 34) and IX (35) and contain synaptotagmin III mRNA (36). Transfection with synaptotagmin I should increase the ratio of synaptotagmin I to other isoforms and may increase the number of copies of synaptotagmin per vesicle as well. The parallel changes in $k_{\rm d}$ and $k_{\rm c}$ just discussed for synaptotagmin I would then reflect these changes. Enhancing Ca²⁺ entry with extra Ca²⁺ channels altered the stability of the fusion pore in the same way as

extra synaptotagmin I, as expected if synaptotagmin I acts as a Ca²⁺ sensor. Synaptotagmin IV levels are normally very low in PC12 cells (34). In light of the weak Ca^{2+} binding of this protein (37), the reduced exocytosis seen with synaptotagmin IV further supports synaptotagmin's role as a Ca²⁺ sensor. Overexpression of synaptotagmin IV in Drosophila reduces synaptic transmission (38), and this may reflect the reduction in Ca²⁺-triggered fusion observed here.

Synaptotagmin influences the stability of open fusion pores and is therefore likely to be intimately associated with a molecular complex that performs the function of fusing vesicle and plasma membranes. Changes in fusion pore dynamics have recently been proposed to play a role in synaptic plasticity (39), and the control of synaptic vesicle fusion pores by synaptotagmin could provide a molecular mechanism. Synaptotagmin oligomerizes (40) and binds lipids (6), syntaxin (41), SNAP-25 (42), and the SNARE complex (12), all in a Ca²⁺-dependent manner. Because SNARE proteins fuse membranes (11), the synaptotagmin-mediated alteration in fusion pore open time may represent a functional consequence of these interactions. Mutations in synaptotagmin that impair Ca^{2+} -triggered lipid binding (9) and oligomerization (10) reduce synaptic transmission, and the present approach offers a means of assessing whether these mutations act

Fig. 4. (A) Spike shapes and decays. Spikes are shown alongside double exponential fits to the decay phase (scale bars: 10 pA, 1 ms). (B) Spike rise times (35 to 90%). (C) The time constant for the fast component of spike decay, τ_1 (decays of single exponential fits were similar to the decays of the fast component of double exponential fits, so the values were combined). (D) Time constants for the slow component of decay, τ_2 , from decays that were double exponential. *, P < 0.05; **, P <0.01 [$N = \sim 100$ in (B), ~ 100 in (C), and ~ 25 in (D)].

through a change in fusion pore kinetics. Future studies on how the control of fusion pores by synaptotagmin is regulated by Ca²⁺ and SNARE proteins may provide a precise picture of how this protein transduces Ca²⁺ signals during excitation-secretion coupling.

References and Notes

- 1. M. Lindau, W. Almers, Curr. Opin. Neurobiol. 7, 509 (1995).
- 2. Ĺ. J. Breckenridge, W. Almers, Nature 328, 814 (1987).
- 3. R. H. Chow, L. von Rüden, E. Neher, Nature 356, 60 (1992).
- 4. G. Alvarez de Toledo, R. Fernandez-Chacon, J. M. Fernandez, Nature 363, 554 (1993).
- 5. D. Bruns, R. Jahn, Nature 377, 62 (1995). 6. N. Brose, A. G. Petrenko, T. C. Südhof, R. Jahn, Nature 256, 1021 (1992).
- T. L. Schwarz, Curr. Opin. Neurobiol. 4, 633 (1994). T. E. Lloyd, H. J. Bellen, in Neurotransmitter Release, 8. H. Bellen, Ed. (Oxford Univ. Press, Oxford, 2000), pp.
- 352-388. 9. R. Fernandez-Chacon et al., Nature 410, 41 (2001).
- 10. J. T. Littleton et al., J. Neurosci. 21, 1421 (2001).
- 11. T. Weber et al., Cell 92, 759. (1998).
- 12. A. F. Davis et al., Neuron 24, 363 (1999)
- 13. R. M. Wightman et al., Proc. Natl. Acad. Sci. U.S.A. 88, 10754 (1991). Amperometry recording used 5-µm carbon fibers and 14.
- a VA-10 amplifier (ALA Instruments) at a polarization of 650 mV [R. H. Chow, L. von Rüden, in Single-Channel Recording, B. Sakmann, E. Neher, Ed. (Plenum, New York, 1995), pp. 245-275]. Cells were bathed in 150 mM NaCl, 4.2 mM KCl, 1 mM NaH₂PO₄, 0.7 mM MgCl₂, 2 mM CaCl₂, and 10 mM Hepes (pH 7.4) at \sim 22°C. Current was low-pass filtered at 1 kHz and digitized at 4 kHz by a PC running PCLAMP 8 (Axon Instruments). Cells were plated at 1.2×10^5 cells per 35 mm dish and loaded by bathing in 1.5 mM NE and 0.5 mM ascorbate 1 day before experiments. Secretion was induced by pressure ejection of 105 mM KCl/5 mM NaCl in the cell bathing solution from a \sim 2-µm tipped micropipette ~10 µm away. Amperometry records were analyzed with a program written in this laboratory to extract foot information according to the criteria of Chow and von Rüden. Spikes exceeding five times the background noise (~0.4 pA) were analyzed. Feet were analyzed for spikes \geq 20 pA. Error bars are standard errors.
- 15. PC12 cells were cultured [J. C. Hay, T. F. J. Martin, J. Cell Biol. 119, 139 (1992)] in Dulbecco's modified essential medium, with glucose (4.5 mg/ml), NaHCO₃ (3.7 mg/ml), 5% horse serum, and 5% iron-supplemented calf serum, in 10% CO2-air at 37°C. Cells were transfected with 50 µg of DNA in 120 mM KCl, 0.15 mM CaCl₂, 10 mM KH₂PO₄, 2 mM EGTA, 5 mM MgCl₂, 2 mM Mg-adenosine triphosphate (ATP), 5 mM glutathione, and 2.5 mM Hepes (pH 7.6). An Invitrogen electroporator was set at 1000 µF and 330 V. cDNAs encoding synaptotagmin I (G374) (43), synaptotagmin IV (44), and P/Q Ca²⁺ channels (45) were subcloned into pIRES2-EGFP (Clonetech) with Nhe I and Bam HI for synaptotagmin I, Nhe I and Sma I for synaptotagmin IV, and Sal I and Bam HI for P/Q Ca²⁺ channel. Experiments were performed 60 to 96 hours after transfection. Transfected cells (~30% efficiency) were selected by green fluorescent protein (GFP) fluorescence. Control cells were transfected with vector lacking a second insert. Control and untransfected cells were similar. 16. H. Kasai et al., J. Physiol. 494, 53 (1996).
- 17. T. Kishimoto et al., J. Physiol. 533, 627 (2001).
- 18. C. A. Earles, J. Bai, P. Wang, E. R. Chapman, J. Cell Biol.. in press.
- 19. Supplementary data are available on Science Online at www.sciencemag.org/cgi/content/full/294/5544/ 1111/DC1.
- 20. Ca^{2+} current was measured by patch clamp [O. P. Hamill et al., Pflügers Arch. 391, 85 (1981)] with an EPC-7 amplifier (Instrutech). Borosilicate patch pipettes of 3 to 7 megaohms were filled with 90 mM

N-methylglucamine, 20 mM TEA-Cl, 0.2 mM EGTA, 2 mM MgCl₂, 20 mM Na₂-creatine phosphate, 5 mM Mg-ATP, and 0.1 mM guanosine triphosphate, and 10 Hepes (pH 7.35). The bathing solution was 105 mM NaCl, 20 mM CaCl₂, 1.5 mM MgSO₄, 15 mM glucose, 0.003 mM tetrodotoxin, and 5 mM Hepes (pH 7.35).

- 21. N. Charvin et al., EMBO J. 16, 4591 (1997).
- O. Wiser, D. Tobi, M. Trus, D. Atlas, FEBS Lett. 404, 203 (1997).
- D. K. Kim, W. A. Catterall, Proc. Natl. Acad. Sci. U.S.A. 94, 14782 (1997).
- 24. N. E. Reist et al., J. Neurosci. 18, 7662 (1998).
- R. Bauerfeind, A. Regnier-Vigouroux, T. Flatmark, W. B. Huttner, *Neuron* 11, 105 (1993).
- 26. Cells were permeabilized with 0.3% Triton X100, fixed in paraformaldehyde, blocked in 10% fetal bovine serum (FBS) in phosphate-buffered saline (PBS) for 1 hour, and incubated with primary antibodies diluted in 10% FBS for 1 hour. CFP-tagged protein was detected with rabbit polyclonal antibody to GFP (Panvera). Chromogranin B was detected with a mouse monoclonal antibody (generously provided by W. Huttner). Cells were washed and stained with secondary antibodies (fluorescein-conjugated goat

antibody to rabbit for CFP and Texas red-conjugated goat antibody to mouse for chromogranin) for 1 hour. After four washes in PBS, cover slips were mounted and examined with a Bio-Rad MRC 600 confocal system. Subcloning into the pECFP-C1 vector (Clonetech) used Eco RI and Bam HI for synaptotagmin I and Hind III and Kpn I for synaptotagmin IV. Transfection was as in (15).

- 27. T. J. Schroeder et al., Biophys. J. 70, 1061 (1996).
- D. Colquhoun, A. G. Hawkes, in Single-Channel Recording, B. Sakmann, E. Neher, Eds. (Plenum, New York, 1995), pp. 397–482.
- M. B. Jackson, *Methods Enzymol.* 207, 729 (1992).
 M. Haller, C. Heinemann, R. H. Chow, R. Heidelberger,
- E. Neher, *Biophys. J.* **74**, 2100 (1998). 31. R. J. Fisher, J. Pevsner, R. D. Burgoyne, *Science* **291**,
- 875 (2001).
- Z. Zhou, S. Misler, R. H. Chow, *Biophys. J.* 70, 1543 (1996).
- Y. Shoji-Kasai *et al.*, *Science* **256**, 1820 (1992).
 G. D. Ferguson, D. M. Thomas, L. A. Elferink, H. R.
- Herschman, J. Neurochem. 72, 1821 (1999).
 35. A. Hudson, M. Birnbaum, Proc. Natl. Acad. Sci. U.S.A. 92, 5895 (1995).

Localization of Long-Term Memory Within the *Drosophila* Mushroom Body

Alberto Pascual and Thomas Préat*

The mushroom bodies, substructures of the *Drosophila* brain, are involved in olfactory learning and short-term memory, but their role in long-term memory is unknown. Here we show that the *alpha-lobes-absent* (*ala*) mutant lacks either the two vertical lobes of the mushroom body or two of the three median lobes which contain branches of vertical lobe neurons. This unique phenotype allows analysis of mushroom body function. Long-term memory required the presence of the vertical lobes but not the median lobes. Short-term memory was normal in flies without either vertical lobes or the two median lobes studied.

The organization of the Drosophila brain, which shows highly organized and specialized structures despite its small size, in combination with its sophisticated behavioral repertoires and powerful molecular genetic tools render this organism a model of choice for the study of integrative brain functions, such as associative learning and memory. The mushroom bodies (MBs) constitute a prominent bilateral structure of the insect brain. The MBs are formed and rearranged sequentially during embryonic and postembryonic development (1-3). In adult Drosophila, they are composed of about 5000 neurons, which receive, through the calyx, olfactory inputs from the antennal lobes. The MBs are essential for associative learning and memory (4-6). Several proteins involved in learning and short-term memory are detected at high levels in the MBs (7), and chemical ablation of Drosophila MBs abolishes olfactory learning (6). Synaptic transmission from the MBs is required for retrieval of short-term memories but not for acquisition or storage (8, 9). With intensive and spaced training, Drosophila can also display long-term memory (LTM), which depends on protein synthesis after the conditioning paradigm (10). We have now tested whether Drosophila MBs are involved in LTM formation.

Three categories of MB intrinsic neurons (Kenyon cells), associated with five sets of lobes, have been described (Fig. 1A) (1, 11). Two types of neurons branch to give rise to a vertical and a median lobe $(\alpha/\beta$ lobes and α'/β' lobes, respectively). The third type composes the median γ lobe. Uniquely identifiable efferent neurons originate from specific parts of the medial and vertical lobes, and send their axons to characteristic regions of the forebrain (12). Afferents from the forebrain also invade specific parts of the lobes (12). The implication of this architecture, which also characterizes other insect MBs (13), suggests that the lobes are not identical and may support quite distinct functions.

- 36. M. Mizuta et al., J. Biol. Chem. 269, 11675 (1994).
- C. von Poser, K. Ichtchenko, X. Shao, J. Rizo, T. Sudhof, J. Biol. Chem. 272, 14314 (1995).
- J. T. Littleton, T. L. Serano, G. M. Rubin, B. Ganetzky, E. R. Chapman, *Nature* **400**, 757 (1999).
- S. Choi, J. Klinglauf, R. W. Tsien, *Nature Neurosci.* 3, 330 (2000).
- E. R. Chapman, S. An, J. M. Edwardson, R. Jahn, J. Biol. Chem. 271, 5844 (1996).
- E. R. Chapman, P. I. Hanson, S. An, R. Jahn, J. Biol. Chem. 270, 23667 (1995).
- R. R. Gerona, E. C. Larsen, J. A. Kowalchyk, T. F. Martin, J. Biol. Chem. 275, 6328 (2000).
- 43. R. C. Desai et al., J. Cell Biol. 150, 1125 (2000).
- L. Vician, I. K. Lim, G. Ferguson, M. Baudry, H. R. Herschman, Proc. Natl. Acad. Sci. U.S.A. 92, 2164 (1995).
- 45. P. T. Ellinor et al., Nature 363, 455 (1993).
- 46. Supported by grants from NIH to M.B.J. and T.F.J.M. and by grants from NIH, AHA, and the Milwaukee Foundation to E.R.C. E.R.C. is a Pew Scholar.

2 July 2001; accepted 21 September 2001

Genetic characterization of the alphalobes-absent (ala) mutant, which shows abnormal MBs, was previously reported (14). The original mutation corresponds to the insertion of a P-element and is recessive. Phenotypic revertants as well as new mutant alleles were produced by excision of the Pelement (14). We reassessed the ala brain defect using the GAL4-OK107 enhancer-trap line (15), which labels all five lobes (Fig. 1), and the antibody to FasciclinII (FasII), which strongly labels α/β lobes and weakly labels γ lobes (11, 16). Three batches of brain analyses showed that $10.5 \pm 2.8\%$ of *ala* individuals possessed all five lobes in both hemispheres, $36 \pm 2.4\%$ lacked the β and β' lobes in both hemispheres, and $4.5 \pm 1.1\%$ lacked α and α' vertical lobes. The remaining flies showed different combinations of phenotypes in the left and right hemisphere. ala flies without vertical lobes also showed a fusion of the left and right β and β' lobes (Fig. 1C). This fusion phenotype is also observed in a fraction of ala flies with all lobes present $(3.6 \pm 1.4\% \text{ of total})$ (16). A similar phenotype distribution was observed in ala/ Df(1)4b18 individuals (17). γ lobes appeared to be normal in ala mutants. This observation was reinforced by the fact that in second instar larvae ala mutants possessed normal vertical and median γ projections (18).

The *ala* mutant was trained to associate an odor with electric shocks by using three different experimental paradigms (19, 20): (i) a single training cycle protocol to induce short-term memory (21); (ii) an intensive spaced conditioning protocol, consisting of 10 individual training sessions with a 15-min rest interval between each session, to induce LTM (10); and (iii) a massed conditioning protocol, consisting of 10 consecutive training sessions without rest, to induce 24-hour memory but not protein-synthesis dependent LTM (10).

Developpement, Evolution, Plasticité du Système Nerveux, CNRS, 1 Avenue de la Terrasse, 91190 Gifsur-Yvette, France.

^{*}To whom correspondence should be addressed. Email: preat@iaf.cnrs-gif.fr